深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 12061 篇文献,本页显示第 2001 - 2020 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
2001 2025-01-12
Comparison of Three Computational Tools for the Prediction of RNA Tertiary Structures
2024-Nov-08, Non-coding RNA IF:3.6Q2
研究论文 本研究比较了三种计算工具(RNAComposer、Rosetta FARFAR2和AlphaFold 3)在预测RNA三级结构方面的效用 首次将AlphaFold 3应用于RNA三级结构预测,并展示了其在处理常见转录后修饰方面的优势 三种工具在预测人类前微小RNA和较大BioRNA分子的远端环结构时存在显著差异,且这些RNA的三级结构尚未通过实验表征 比较不同计算工具在预测RNA三级结构方面的性能 非编码RNA(ncRNAs),包括小干扰RNA药物nedosiran和新型生物工程RNA(BioRNA)分子 生物信息学 NA 计算预测 AlphaFold 3, RNAComposer, Rosetta FARFAR2 RNA序列 多种RNA分子,包括nedosiran和BioRNA分子
2002 2025-01-12
Research on the generation and annotation method of thin section images of tight oil reservoir based on deep learning
2024-Jun-04, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于深度学习的致密油储层薄片图像生成与标注方法,旨在解决薄片图像样本不足的问题 通过引入类别注意力机制改进StyleGAN网络,并设计SALM标注模块实现半自动标注,提升了生成图像的质量和标注效率 方法依赖于原始图像的质量和数量,且标注过程仍需一定的人工干预 提高致密油储层薄片图像的样本量,优化深度学习模型的训练效果 致密油储层薄片图像 计算机视觉 NA 深度学习 StyleGAN 图像 以三肇凹陷扶余储层为目标区域,使用Augmentor策略空间对原始图像进行初步增强
2003 2025-01-12
L2NLF: a novel linear-to-nonlinear framework for multi-modal medical image registration
2024-May, Biomedical engineering letters IF:3.2Q2
研究论文 本文提出了一种新的线性到非线性框架(L2NLF),用于多模态医学图像配准,旨在解决多模态医学图像配准的复杂性和挑战性 提出了线性到非线性框架(L2NLF),并设计了全新的配准网络CrossMorph,该网络结合了U-net结构和体积CrossFormer块,能更好地提取局部和全局信息 未提及具体局限性 提高多模态医学图像配准的准确性和效率 多模态医学图像 计算机视觉 NA 深度学习 CrossMorph(基于U-net结构的深度神经网络) 医学图像 240名患者的脑部T1和T2数据
2004 2025-01-12
Laparoscopic Colorectal Surgery with Anatomical Recognition with Artificial Intelligence Assistance for Nerves and Dissection Layers
2024-Mar, Annals of surgical oncology IF:3.4Q1
研究论文 本文探讨了在腹腔镜结直肠手术中使用人工智能辅助进行神经和解剖层识别的效果 开发了名为Eureka的AI模型,用于自动分割疏松结缔组织(LCT)和分离神经,以帮助外科医生在手术中识别和解剖神经 研究样本量较小,且未进行长期随访以评估术后功能恢复情况 提高腹腔镜结直肠手术中神经和解剖层的识别准确性,以减少术后并发症 腹腔镜结直肠手术中的神经和解剖层 数字病理 结直肠癌 深度学习 Eureka 图像 未明确提及样本量
2005 2025-01-12
Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms
2024, Digestion IF:3.0Q2
综述 本文综述了内镜人工智能系统在胃肠道肿瘤图像分析中的应用,特别是针对食管鳞状细胞癌、食管腺癌、胃癌和结直肠息肉的研究 总结了内镜AI系统在胃肠道肿瘤检测和诊断中的应用,展示了其在提高病变检测率和诊断准确性方面的潜力 部分研究尚未进行随机对照试验(RCT),且主要集中于亚洲国家 探讨内镜人工智能系统在胃肠道肿瘤检测和诊断中的应用效果 食管鳞状细胞癌、食管腺癌、胃癌和结直肠息肉 数字病理 胃肠道肿瘤 深度学习 计算机辅助检测/诊断系统(CADe/CADx) 图像 NA
2006 2025-01-11
[Research progress on prognostic prediction models for patients undergoing extracorporeal membrane oxygenation]
2024-Dec, Zhonghua wei zhong bing ji jiu yi xue
研究论文 本文综述了体外膜肺氧合(ECMO)患者预后预测模型的研究进展,并提出了未来模型开发的方向 分类现有ECMO成人患者的预后模型,并提出了多中心前瞻性研究、机器学习和深度学习技术整合等未来发展方向 现有模型在样本量、多中心验证、静态数据分析和模型适用性方面存在局限性 优化治疗决策和提高患者生存率 接受ECMO治疗的患者 医学 呼吸衰竭和循环衰竭 ECMO 预后预测模型 临床数据 NA
2007 2025-01-11
Assessing Artificial Intelligence in Oral Cancer Diagnosis: A Systematic Review
2024-Oct-29, The Journal of craniofacial surgery IF:1.0Q3
系统综述 本文系统评估了2020年至2024年间人工智能技术在口腔癌检测和诊断中的有效性和准确性 首次系统性地评估了人工智能在口腔癌诊断中的应用,涵盖了多种AI技术和数据类型 数据集变异性和监管问题是主要限制 评估人工智能技术在口腔癌检测和诊断中的有效性和准确性 口腔癌 数字病理学 口腔癌 机器学习和深度学习算法 NA 图像和病理切片 12篇研究论文
2008 2025-01-11
Precision Opioid Prescription in ICU Surgery: Insights from an Interpretable Deep Learning Framework
2024, Journal of surgery (Lisle, IL)
研究论文 本文开发了一种可解释的深度学习框架,用于评估个体特征对术后阿片类药物使用的影响,并识别重要因素 提出了一个可解释的深度学习框架,结合Permutation Feature Importance Test (PermFIT)方法,提高了模型在临床实践中的可接受性 尽管DNN模型表现优异,但其解释性仍然依赖于PermFIT方法,可能限制了其在某些临床场景中的应用 准确预测术后阿片类药物需求,并理解相关因素,以指导适当的阿片类药物使用,提高患者安全和恢复效果 ICU手术患者 机器学习 NA Permutation Feature Importance Test (PermFIT) Deep Neural Networks (DNN), Support Vector Machines, eXtreme Gradient Boosting, Random Forest 电子健康记录 4,912名手术患者
2009 2025-01-07
Linking transcriptome and morphology in bone cells at cellular resolution with generative AI
2024-Dec-31, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research IF:5.1Q1
研究论文 本文探讨了生成式AI在骨细胞转录组和形态学数据中的应用及其潜力 利用生成式AI模型在细胞分辨率上揭示骨细胞的复杂生物学过程,特别是在预测细胞分化动态、连接分子和形态学特征以及预测细胞对扰动的反应方面 骨单细胞数据集中的技术偏差、重要骨细胞类型的缺乏以及空间信息的缺失需要解决 探索生成式AI在骨细胞研究中的应用及其潜力 骨细胞 计算机视觉 NA 单细胞测序、空间转录组学 生成式AI 组织学图像、单细胞分子数据、空间转录组数据 NA
2010 2025-01-07
Design of an improved graph-based model for real-time anomaly detection in healthcare using hybrid CNN-LSTM and federated learning
2024-Dec-30, Heliyon IF:3.4Q1
研究论文 本文提出了一种改进的基于图的模型,用于医疗保健中的实时异常检测,结合了混合CNN-LSTM和联邦学习技术 提出了一种先进的混合CNN-LSTM模型,能够同时提取医疗图像的空间特征和患者生命体征的时间依赖性,并结合联邦学习和差分隐私技术解决数据安全和隐私问题 NA 实现医疗系统中具有弹性的实时异常检测,同时确保患者数据的隐私和安全 医疗图像、患者生命体征、EHR文本数据和时间序列传感器数据 机器学习 NA CNN-LSTM、联邦学习、差分隐私 CNN-LSTM 图像、文本、时间序列数据 测试数据集包含10,000名患者,系统每秒处理超过100,000条消息
2011 2025-01-07
RiskPath: Explainable deep learning for multistep biomedical prediction in longitudinal data
2024-Dec-26, medRxiv : the preprint server for health sciences
研究论文 本文介绍了RiskPath,一个可解释的AI工具箱,用于在经典和新兴的纵向队列中进行风险分层预测 RiskPath提供了先进的时间序列方法,并集成了理论指导的优化,以指定最佳模型拓扑或探索性能与复杂性的权衡 模型的结构复杂性和大小可能限制了其在风险分层工具中的应用 开发一个可解释的AI工具箱,用于多步骤生物医学预测 纵向数据中的疾病风险预测 机器学习 NA 时间序列AI方法 NA 时间序列数据 NA
2012 2025-01-07
Erratum: Retraction notice to "A deep learning approach based on graphs to detect plantation lines" [Heliyon Volume 10, Issue 11, 15 June 2024, e31730]
2024-Dec-15, Heliyon IF:3.4Q1
correction 本文是对先前发表文章的更正通知 NA NA NA NA NA NA NA NA NA NA
2013 2025-01-07
Simple quantitation and spatial characterization of label free cellular images
2024-Dec-15, Heliyon IF:3.4Q1
研究论文 本文开发了一种无需训练数据的计算流程,用于基于高内涵显微镜设备生成的图像进行细胞数量量化和空间分布特征描述 开发了一种无需训练数据的计算流程,结合经典图像处理功能、Voronoi分割、高斯混合建模和自动参数优化,适用于大规模或重复细胞培养实验的自动化无标记图像分析 NA 开发一种无需训练数据的计算流程,用于无标记图像分析 无标记细胞图像 计算机视觉 NA 高内涵显微镜 NA 图像 四种形态不同的细胞类型,具有不同的细胞密度
2014 2025-01-07
SAUSI: an integrative assay for measuring social aversion and motivation
2024-Dec-07, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种新的行为任务——选择性访问无限制社交互动(SAUSI),用于全面评估小鼠的社交厌恶 SAUSI任务整合了社交动机、犹豫、决策和自由互动等元素,克服了传统评估工具的局限性,提供了对社交厌恶的全面评估 传统评估工具如三室社交性测试和居民入侵者测试未能全面揭示社交厌恶的关键组成部分,如社交冻结和社交犹豫行为 研究社交厌恶的生物行为机制,开发新的评估工具 小鼠 行为神经科学 社交焦虑症、自闭症谱系障碍 深度学习分析 NA 行为数据 NA
2015 2025-01-07
Enhanced 3D dose prediction for hypofractionated SRS (gamma knife radiosurgery) in brain tumor using cascaded-deep-supervised convolutional neural network
2024-Dec, Physical and engineering sciences in medicine IF:2.4Q2
研究论文 本文提出了一种用于脑肿瘤伽玛刀放射外科(GKRS)剂量预测的级联深度监督卷积神经网络(CDS-CNN),以提高剂量分布的预测精度 提出了一种创新的级联深度监督卷积神经网络(CDS-CNN),结合多级深度监督和顺序多网络训练策略,能够提取切片内和切片间的特征,从而实现更真实的剂量预测 尽管模型在预测精度上有所提升,但仍需进一步验证其在更大样本和不同临床环境中的泛化能力 提高伽玛刀放射外科(GKRS)剂量分布的预测精度,减少对医学物理学家的依赖,优化临床工作流程 脑肿瘤患者 数字病理学 脑肿瘤 深度学习 级联深度监督卷积神经网络(CDS-CNN) CT扫描图像 105名脑肿瘤患者(85例用于训练,20例用于测试)
2016 2025-01-07
Deep learning architecture with shunted transformer and 3D deformable convolution for voxel-level dose prediction of head and neck tumors
2024-Dec, Physical and engineering sciences in medicine IF:2.4Q2
研究论文 本研究开发了一种新型深度学习多尺度Transformer(MST)模型,旨在加速头颈部肿瘤的IMRT计划,同时生成更精确的体素级剂量分布预测 提出了一种结合分流Transformer和3D可变形卷积瓶颈块的端到端MST模型,用于捕捉多尺度特征并学习全局依赖关系,同时通过数据增强和自知识蒸馏进一步提高模型预测性能 研究主要基于OpenKBP Challenge数据集,可能在其他数据集上的泛化能力有待验证 加速头颈部肿瘤的IMRT计划,提高体素级剂量分布的预测精度 头颈部肿瘤 计算机视觉 头颈部肿瘤 深度学习 Transformer, 3D deformable convolution 医学影像数据 OpenKBP Challenge数据集
2017 2025-01-07
A deep learning phase-based solution in 2D echocardiography motion estimation
2024-Dec, Physical and engineering sciences in medicine IF:2.4Q2
研究论文 本文提出了一种基于四元数小波变换(QWT)相位的深度学习新方法,用于估计二维超声心动图序列中的心肌运动和应变 该方法首次将QWT相位和强度作为定制PWC-Net结构的输入,用于二维超声心动图运动估计,表现出优越的几何和临床指标 研究仅基于模拟的B型超声心动图序列进行训练和测试,未涉及真实患者数据 开发一种新的深度学习方法来提高二维超声心动图中心肌运动和应变的估计精度 二维超声心动图序列中的心肌运动和应变 计算机视觉 心血管疾病 四元数小波变换(QWT) PWC-Net 图像 两个模拟的B型超声心动图序列
2018 2025-01-07
PPG2RespNet: a deep learning model for respirational signal synthesis and monitoring from photoplethysmography (PPG) signal
2024-Dec, Physical and engineering sciences in medicine IF:2.4Q2
研究论文 本文提出了一种名为PPG2RespNet的深度学习模型,用于从光电容积描记图(PPG)信号中合成和监测呼吸信号 PPG2RespNet引入了分层跳跃连接,建立了层次化和密集的连接,以增强信号提取的鲁棒性,并对瓶颈层进行了修改以增强潜在特征的提取 NA 解决现有方法在手动参数调整和预定义特征方面的局限性,实现呼吸信号的自主高效提取 包含重症监护病房患者、儿科患者和健康受试者的PPG数据 机器学习 呼吸系统疾病 深度学习 PPG2RespNet(基于UNet和UNet++的改进模型) PPG信号 三个公开的PPG数据集(VORTAL、BIDMC、Capnobase)
2019 2025-01-07
PET/CT-based 3D multi-class semantic segmentation of ovarian cancer and the stability of the extracted radiomics features
2024-Dec, Physical and engineering sciences in medicine IF:2.4Q2
研究论文 本研究应用3D U-Net深度学习模型对PET/CT图像中的卵巢癌进行多类语义分割,并评估提取的放射组学特征的稳定性 首次在PET/CT图像中应用3D U-Net模型进行卵巢癌的多类语义分割,并评估放射组学特征的稳定性 样本量相对较小,仅包含39名卵巢癌患者的数据 提高卵巢癌的诊断和治疗规划效率 卵巢癌患者的PET/CT图像 计算机视觉 卵巢癌 PET/CT成像 3D U-Net 图像 39名卵巢癌患者的3120张PET/CT图像
2020 2025-01-07
Exploratory study on the enhancement of O-RADS application effectiveness for novice ultrasonographers via deep learning
2024-Dec, Archives of gynecology and obstetrics IF:2.1Q2
研究论文 本研究旨在通过深度学习技术提升新手超声医师在卵巢-附件报告和数据系统(O-RADS)中的应用效果 使用基于ConvNeXt-Tiny的深度卷积神经网络模型来区分O-RADS中的经典良性病变(CBL)与其他病变(OL),并通过U-Net模型进行自动病变分割 研究仅涉及两个新手超声医师的评估,样本量较小 提升O-RADS系统在新手超声医师中的应用效果 经病理证实的附件病变的超声图像 计算机视觉 卵巢疾病 深度学习 ConvNeXt-Tiny, U-Net 超声图像 两组经病理证实的附件病变的超声图像(开发数据集和独立测试数据集)
回到顶部