深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 12039 篇文献,本页显示第 2421 - 2440 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
2421 2025-02-01
Deep learning analysis of serial digital breast tomosynthesis images in a prospective cohort of breast cancer patients who received neoadjuvant chemotherapy
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 本研究探讨了在乳腺癌新辅助化疗(NACT)期间使用人工智能(AI)分析连续数字乳腺断层合成(DBT)图像,以预测NACT完成后的病理完全缓解(pCR) 首次将深度学习AI系统应用于连续DBT图像分析,以预测乳腺癌患者的pCR 样本量较小,未来需要更大数据集以进行更全面的模型训练和性能评估 探索AI在乳腺癌NACT期间预测pCR的潜力 接受NACT的乳腺癌患者 计算机视觉 乳腺癌 数字乳腺断层合成(DBT) 3D ResNet 图像 149名女性乳腺癌患者 NA NA NA NA
2422 2025-02-01
Multicenter privacy-preserving model training for deep learning brain metastases autosegmentation
2024-09, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology IF:4.9Q1
研究论文 本研究探索了多中心数据异质性对深度学习脑转移瘤自动分割性能的影响,并评估了增量迁移学习技术LWF在不共享原始数据情况下提升模型泛化能力的有效性 提出了使用增量迁移学习技术(LWF)进行隐私保护的模型训练,以提高多中心数据下的模型泛化能力 数据异质性(如转移密度、空间分布和图像空间分辨率的差异)导致模型性能在不同中心间存在差异,限制了模型的泛化能力 研究多中心数据异质性对深度学习脑转移自动分割性能的影响,并评估增量迁移学习技术的有效性 脑转移(BM)的自动分割 计算机视觉 脑转移 深度学习 DeepMedic网络 医学影像 来自六个中心的脑转移数据集(UKER、USZ、Stanford、UCSF、NYU、BraTS Challenge 2023) NA NA NA NA
2423 2025-10-07
Artificial intelligence for triaging of breast cancer screening mammograms and workload reduction: A meta-analysis of a deep learning software
2024-Sep, Journal of medical screening IF:2.6Q2
meta-analysis 通过荟萃分析评估深度学习软件在乳腺癌筛查乳腺X线摄影分流中减少放射科医生工作量的效果 首次通过荟萃分析量化评估AI分流在乳腺癌筛查中减少工作量的潜力,确定了68.3%的工作量减少率同时保持93.1%的灵敏度 仅纳入了使用同一商业深度学习算法的三项研究,存在较高的异质性(I² > 80%),AI实施仍复杂且异质 评估基于AI的乳腺癌筛查乳腺X线摄影分流能否在保持非劣灵敏度的情况下减少放射科医生工作量 乳腺癌筛查乳腺X线摄影检查 digital pathology breast cancer deep learning DL mammogram images 156,852次检查 NA commercially available DL algorithm sensitivity, specificity NA
2424 2025-10-07
Neuroimage analysis using artificial intelligence approaches: a systematic review
2024-Sep, Medical & biological engineering & computing IF:2.6Q3
系统综述 本文系统综述了2013-2023年间人工智能技术在神经影像数据分析中的应用现状和发展趋势 首次系统梳理了近十年AI在神经影像分析中的应用格局,明确了主要临床任务分布和疾病研究重点 仅纳入456篇文献,可能未覆盖该领域所有相关研究;时间范围限定为2013-2023年 评估人工智能技术对神经影像数据分析的影响,提升诊断能力并推动领域发展 神经影像数据,重点关注精神和神经系统疾病 医学影像分析 精神和神经系统疾病 神经影像技术 机器学习,深度学习 神经影像数据 456篇相关文献,最终纳入104项研究进行详细分析 NA NA NA NA
2425 2025-02-01
Analysis of the integrated role of the Yangtze River Delta based on the industrial economic resilience of cities during COVID-19
2024-07-26, Scientific reports IF:3.8Q1
研究论文 本研究探讨了COVID-19期间长江三角洲地区城市产业经济韧性及其对区域一体化战略的影响 使用UNet深度学习方法检测土地利用类型,并结合土地转移矩阵和标准差椭圆分析工业用地变化和工业产值空间分布 研究区域仅限于安徽省的芜湖、马鞍山和滁州三市,可能无法全面反映整个长江三角洲地区的情况 分析COVID-19期间长江三角洲地区城市产业经济韧性及其对区域一体化战略的影响 安徽省的芜湖、马鞍山和滁州三市的工业用地和工业产值 机器学习 NA UNet深度学习方法 UNet 土地利用数据 安徽省的芜湖、马鞍山和滁州三市 NA NA NA NA
2426 2025-10-07
Deep learning automatically assesses 2-µm laser-induced skin damage OCT images
2024-Apr-18, Lasers in medical science IF:2.1Q2
研究论文 本研究提出基于光学相干断层扫描和深度学习技术的无创自动评估方法,用于定性和定量分析2微米激光诱导皮肤损伤 首次将深度学习与OCT技术结合实现激光皮肤损伤的自动定量评估,开发了无创在体分析方法 研究仅在小鼠模型中进行,尚未在人体验证 开发自动评估激光诱导皮肤损伤的方法 小鼠皮肤组织 计算机视觉 皮肤损伤 光学相干断层扫描 深度学习 图像 NA NA U-Net, DeepLabV3+, PSP-Net, HR-Net 分割准确性, 定量评估误差 NA
2427 2025-02-01
Application of Deep Learning Algorithms Based on the Multilayer Y0L0v8 Neural Network to Identify Fungal Keratitis
2024, Sovremennye tekhnologii v meditsine
研究论文 本文开发了一种基于深度学习算法的真菌性角膜炎诊断方法,通过分析眼前节照片,并在测试数据集上评估该方法的敏感性和特异性,与执业眼科医生的结果进行比较 使用多层Y0L0v8神经网络进行真菌性角膜炎的自动诊断,这是首次将此类深度学习算法应用于该疾病的诊断 方法的性能仅在测试数据集上进行了评估,未在更大规模或多样化的临床环境中验证 开发一种基于深度学习算法的真菌性角膜炎诊断方法 真菌性角膜炎 计算机视觉 角膜炎 深度学习 Y0L0v8神经网络 图像 NA NA NA NA NA
2428 2025-02-01
Evolution of artificial intelligence in healthcare: a 30-year bibliometric study
2024, Frontiers in medicine IF:3.1Q1
研究论文 本文对过去30年医疗保健领域人工智能(AI)的文献进行了动态和纵向的文献计量分析,以探讨医学与人工智能融合的现状和趋势 首次对医疗保健领域AI文献进行30年的纵向文献计量分析,揭示了AI技术在医疗领域的持续爆发性增长趋势 研究主要基于Web of Science数据库,可能未涵盖所有相关文献 探讨医学与人工智能融合的现状和趋势 1993年至2023年间发表的医疗保健领域AI相关文献 机器学习 NA 文献计量分析 NA 文献数据 22,950篇文献 NA NA NA NA
2429 2025-01-31
Artificial Intelligence Transforming Post-Translational Modification Research
2024-Dec-31, Bioengineering (Basel, Switzerland)
综述 本文探讨了人工智能(AI)在研究蛋白质翻译后修饰(PTMs)中的应用 本文创新性地比较了多种深度学习架构和程序,包括最近应用的语言模型,用于预测蛋白质上的PTM位点及其调控功能,并描述了一个高通量PTM数据生成管道 本文未提及具体的研究局限性 探索人工智能在蛋白质翻译后修饰研究中的应用 蛋白质翻译后修饰(PTMs) 生物信息学 NA 深度学习 语言模型 蛋白质数据 NA NA NA NA NA
2430 2025-01-31
Exploring Multi-Pathology Brain Segmentation: From Volume-Based to Component-Based Deep Learning Analysis
2024-Dec-31, Journal of imaging IF:2.7Q3
研究论文 本文探讨了使用深度学习模型对多病理脑部MRI图像进行分割的方法,从基于体积的分析到基于组件的分析 本文创新性地对预训练的U-net模型在四种不同脑部病理(肿瘤、中风、多发性硬化症和白质高信号)上的分割结果进行了深入分析,并提供了异常组件的位置、强度和体积的详细评估 模型在检测和分割异常组件时存在较高的假阳性和假阴性率,尤其是在异常组件的部分正确检测方面表现不佳 研究目的是通过深度学习模型对多病理脑部MRI图像进行分割,并评估其在不同病理条件下的表现 研究对象为包含四种不同病理(肿瘤、中风、多发性硬化症和白质高信号)的脑部MRI图像 数字病理 脑部疾病 MRI U-net 图像 验证集中的脑部MRI图像 NA NA NA NA
2431 2025-01-31
Cells Grouping Detection and Confusing Labels Correction on Cervical Pathology Images
2024-Dec-30, Bioengineering (Basel, Switzerland)
研究论文 本文提出了一种基于先验知识收集和混淆标签校正的宫颈细胞检测网络PGCC-Net,旨在通过细胞分组检测和标签校正提高宫颈病理图像的自动分析效率和准确性 利用临床先验知识将检测任务分解为多个子任务进行细胞分组检测,并通过构建特征中心进行标签校正,以提高深度学习网络的分类准确性 未提及具体局限性 提高宫颈病理图像中细胞检测和分类的效率和准确性 宫颈病理图像中的细胞 数字病理学 宫颈癌 深度学习 PGCC-Net 图像 公共数据集7410张图像,私有数据集13526张图像 NA NA NA NA
2432 2025-01-31
External Validation of Deep Learning Models for Classifying Etiology of Retinal Hemorrhage Using Diverse Fundus Photography Datasets
2024-Dec-29, Bioengineering (Basel, Switzerland)
研究论文 本研究旨在通过外部验证深度学习模型(FastVit_SA12和ResNet18)来区分视网膜出血的创伤性和医学性病因,使用多样化的眼底摄影数据集 首次在多样化的眼底摄影数据集上对FastVit_SA12和ResNet18模型进行外部验证,展示了它们在临床环境中准确诊断视网膜出血的潜力 研究依赖于特定数据集,可能无法完全代表所有临床情况 验证深度学习模型在区分视网膜出血病因中的准确性和可靠性 视网膜出血的病因分类 计算机视觉 视网膜疾病 深度学习 FastVit_SA12, ResNet18 图像 2661张眼底摄影图像 NA NA NA NA
2433 2025-01-31
Artificial Intelligence in Pediatric Electrocardiography: A Comprehensive Review
2024-Dec-27, Children (Basel, Switzerland)
综述 本文综述了人工智能在儿科心电图分析中的应用现状,探讨了深度学习方法在提高诊断准确性、加快工作流程和改善患者预后方面的潜力 首次全面回顾了人工智能在儿科心电图分析中的应用,并探讨了该领域的独特挑战和未来研究方向 尽管人工智能在心电图分析中显示出巨大潜力,但其广泛临床应用仍需进一步研究、严格验证,并考虑公平性、伦理、法律和实际挑战 探讨人工智能在儿科心电图分析中的应用,以提高诊断准确性和患者预后 儿科心电图数据 医疗人工智能 心血管疾病 深度学习 NA 心电图数据 NA NA NA NA NA
2434 2025-01-31
HDNLS: Hybrid Deep-Learning and Non-Linear Least Squares-Based Method for Fast Multi-Component T1ρ Mapping in the Knee Joint
2024-Dec-25, Bioengineering (Basel, Switzerland)
研究论文 本文提出了一种结合深度学习和非线性最小二乘法的混合模型HDNLS,用于膝关节的快速多组分T1ρ映射 HDNLS模型结合了基于合成数据训练的体素级深度学习和少量NLS迭代,加速了拟合过程,并消除了对参考MRI数据的需求 HDNLS在估计质量上显著优于基于深度学习的方法,但在速度上略慢于这些方法 解决非线性最小二乘法在定量磁共振成像中的初始猜测敏感性、收敛速度慢和计算成本高的问题,同时克服基于深度学习的T1ρ拟合方法对噪声敏感和依赖NLS生成参考数据的挑战 膝关节的多组分T1ρ映射 医学影像分析 NA 定量磁共振成像(MRI) HDNLS(混合深度学习与非线性最小二乘法模型) 合成数据 NA NA NA NA NA
2435 2025-01-31
Neoplasms in the Nasal Cavity Identified and Tracked with an Artificial Intelligence-Assisted Nasal Endoscopic Diagnostic System
2024-Dec-25, Bioengineering (Basel, Switzerland)
研究论文 本研究构建了一个人工智能辅助的鼻内窥镜诊断系统,能够初步区分和识别鼻腔肿瘤特性,并在手术中进行实时跟踪,为鼻内窥镜手术提供重要依据 首次结合Deep Snake、U-Net和Att-Res2-UNet网络开发了基于内窥镜图像的鼻腔肿瘤检测网络,并优化了SiamMask在线跟踪算法,实现了术中实时自动跟踪 模型的总体准确率略低于鼻科专家(0.9790 ± 0.00348 vs 0.9707 ± 0.00984) 构建一个能够初步识别鼻腔肿瘤并在手术中实时跟踪的人工智能辅助鼻内窥镜诊断系统 鼻腔肿瘤 计算机视觉 鼻腔肿瘤 深度学习 Deep Snake, U-Net, Att-Res2-UNet, SiamMask 视频数据 1050例鼻内窥镜手术视频数据,涉及四种类型的鼻腔肿瘤 NA NA NA NA
2436 2025-01-31
Automatic Aortic Valve Extraction Using Deep Learning with Contrast-Enhanced Cardiac CT Images
2024-Dec-25, Journal of cardiovascular development and disease IF:2.4Q2
研究论文 本研究评估了使用深度学习技术从对比增强心脏CT图像中自动提取和描绘主动脉瓣环区域的效果 比较了分割和对象检测两种方法在主动脉瓣环区域提取中的准确性,发现对象检测方法表现更优 数据集规模较小,仅包含32个对比增强心脏CT扫描 评估深度学习技术在心脏CT图像中自动提取主动脉瓣环区域的准确性 对比增强心脏CT图像 计算机视觉 心血管疾病 深度学习 DeepLabv3+, YOLOv2 图像 32个对比增强心脏CT扫描 NA NA NA NA
2437 2025-01-31
Dynamic Neural Network States During Social and Non-Social Cueing in Virtual Reality Working Memory Tasks: A Leading Eigenvector Dynamics Analysis Approach
2024-Dec-24, Brain sciences IF:2.7Q3
研究论文 本研究探讨了在虚拟现实环境中,社交和非社交刺激对大脑连接模式的影响,特别是对工作记忆等认知功能的影响 创新性地将LEiDA框架应用于EEG数据,以检测大脑网络状态的快速变化,并结合深度学习和图论分析揭示社交线索对认知过程的显著影响 样本量相对较小(47名参与者),且仅限于虚拟现实环境中的工作记忆任务 研究社交和非社交刺激对大脑连接模式和认知功能的影响 47名参与者在虚拟现实环境中的大脑连接模式 认知神经科学 NA LEiDA框架、EEG、深度学习、图论分析 深度学习 EEG数据 47名参与者 NA NA NA NA
2438 2025-01-31
The Neural Frontier of Future Medical Imaging: A Review of Deep Learning for Brain Tumor Detection
2024-Dec-24, Journal of imaging IF:2.7Q3
综述 本文综述了深度学习在脑肿瘤检测中的应用,总结了近五年的研究成果,探讨了特征提取、分割和分类的最新方法和挑战 填补了深度学习在脑肿瘤检测领域综合评述的空白,分析了100多篇研究论文,总结了关键概念、挑战和数据集,并提出了未来研究方向 可解释人工智能(XAI)的应用仍然有限,尽管其在建立医疗诊断信任方面的重要性 探讨深度学习在脑肿瘤检测中的应用,总结最新方法、挑战和未来方向 脑肿瘤检测 医学影像 脑肿瘤 深度学习 CNN, GAN, Autoencoders, RNN MRI图像 100多篇研究论文 NA NA NA NA
2439 2025-10-07
Bridging healthcare gaps: a scoping review on the role of artificial intelligence, deep learning, and large language models in alleviating problems in medical deserts
2024-Dec-23, Postgraduate medical journal IF:3.6Q1
综述 探讨人工智能、深度学习和大语言模型在解决医疗荒漠地区医疗资源不足问题中的作用 首次系统评估大语言模型在医疗荒漠中整合电子医疗和医疗物联网的潜力 定性叙述性综述,缺乏定量分析和实证研究数据 研究AI技术如何改善医疗荒漠地区的医疗服务可及性和质量 医疗荒漠地区的医疗服务体系 自然语言处理 NA AI技术,大语言模型 LLM 文本 NA NA NA NA NA
2440 2025-01-31
Mapping the Use of Artificial Intelligence-Based Image Analysis for Clinical Decision-Making in Dentistry: A Scoping Review
2024-Dec, Clinical and experimental dental research IF:1.7Q3
综述 本文通过范围综述探讨了人工智能在牙科临床决策中图像分析的应用,并识别了当前文献中的趋势和研究空白 系统地综述了人工智能在牙科图像分析中的应用,特别是在诊断、检测或分类、预测和管理等方面的临床决策支持 综述主要基于现有文献,可能未涵盖所有最新研究进展 研究人工智能在牙科图像分析中的应用及其对临床决策的影响 牙科图像,包括正颌全景片(OPGs)和口内X光片(咬翼片和根尖片) 计算机视觉 NA 卷积神经网络(CNNs) CNN 图像 601,122张图像 NA NA NA NA
回到顶部