深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 12171 篇文献,本页显示第 3121 - 3140 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
3121 2024-11-23
Multi-level efficient 3D image reconstruction model based on ViT
2024-Sep-09, Optics express IF:3.2Q2
研究论文 提出了一种基于视觉变换器(ViT)的多层次高效3D图像重建模型 利用ViT的自注意力机制捕捉全局和局部特征,并通过生成对抗网络(GAN)提高在高噪声和低光子环境下的重建质量和鲁棒性 NA 解决单光子激光雷达在高质量3D重建中面临的高噪声、低精度和长推理时间问题 单光子激光雷达的3D图像重建 计算机视觉 NA 视觉变换器(ViT)、生成对抗网络(GAN) 视觉变换器(ViT)、生成对抗网络(GAN) 图像 NA
3122 2024-11-23
Interpreting forces as deep learning gradients improves quality of predicted protein structures
2024-09-03, Biophysical journal IF:3.2Q2
研究论文 本文提出了一种利用分子动力学力场训练深度学习蛋白质结构预测模型的新方法,以提高预测结构的质量和物理直观性 引入了一种名为OpenMM-Loss的自定义PyTorch损失函数,该函数表示预测结构的势能,并可应用于任何全原子蛋白质结构表示 NA 提高深度学习模型预测蛋白质结构的质量和物理直观性,使其更适合下游任务 蛋白质结构预测模型 机器学习 NA 分子动力学力场 深度学习模型 蛋白质结构 NA
3123 2024-11-23
Rapid, autonomous and ultra-large-area detection of latent fingerprints using object-driven optical coherence tomography
2024-Aug-26, Optics express IF:3.2Q2
研究论文 本研究介绍了一种基于对象驱动的光学相干断层扫描(OD-OCT)技术,用于快速、自主和超大范围检测潜在指纹 通过使用机器人手臂进行稀疏采样,实现了比传统技术快100倍的扫描速度,并结合深度学习模型实时处理B-扫描数据,实现了自主指纹检测 NA 提高潜在指纹检测的速度和覆盖范围,同时保持高分辨率成像 潜在指纹 计算机视觉 NA 光学相干断层扫描(OCT) 深度学习模型 图像 约400 cm²的变形状区域
3124 2024-11-23
Deep learning based on the loss metric for inverse design of photonic resonators
2024-Aug-26, Optics express IF:3.2Q2
研究论文 本文提出并实现了一种新的损失度量方法,用于光子谐振器的逆向设计 本文提出了一种新的损失度量方法,通过傅里叶变换计算时间域复向量,结合频谱MSE和时间域向量误差(TVE),能够更有效地识别谐振特性 NA 改进深度学习算法在光子谐振器逆向设计中的相似性评估 光子谐振器 机器学习 NA 傅里叶变换(FT) 深度学习 频谱数据 NA
3125 2024-11-23
Enhancing single-pixel imaging reconstruction using hybrid transformer network with adaptive feature refinement
2024-Aug-26, Optics express IF:3.2Q2
研究论文 本文提出了一种混合卷积-变换器网络用于单像素成像的高效重建 引入了一种新的混合卷积-变换器网络,结合了U-Net架构和自适应特征细化模块,显著提高了重建速度和准确性 NA 解决现有单像素成像重建技术效率低下的问题 单像素成像数据的重建 计算机视觉 NA NA 混合卷积-变换器网络 图像 NA
3126 2024-11-23
Photonic integrated interference imaging system based on front-end S-shaped microlens array and Con-DDPM
2024-Aug-12, Optics express IF:3.2Q2
研究论文 本文提出了一种基于前端S形微透镜阵列和条件去噪扩散概率模型(Con-DDPM)的光子集成干涉成像系统,以解决UV空间频率采样不均匀和逆傅里叶变换(IFT)伪影问题 引入前端S形微透镜阵列改善UV空间频率采样的均匀性,并采用基于Con-DDPM的深度学习重建算法处理IFT图像,有效去除伪影并恢复图像细节 NA 提高光子集成干涉成像系统的成像质量 UV空间频率采样均匀性和逆傅里叶变换(IFT)伪影 计算机视觉 NA 条件去噪扩散概率模型(Con-DDPM) Con-DDPM 图像 NA
3127 2024-11-23
Deep learning-based general beam synthesis for atmospheric propagation
2024-Aug-12, Optics express IF:3.2Q2
研究论文 本文提出了一种基于深度学习的方法,用于生成通过大气湍流传播的最佳光束 通过卷积神经网络(CNN)的批量计算来近似接收器统计数据,并合成任意复杂幅度分布的广义光束 NA 优化自由空间光系统的传输光束设计 通过大气湍流传播的光束 计算机视觉 NA 深度学习 卷积神经网络(CNN) 光束模式 NA
3128 2024-11-23
Research on deep learning restoration algorithm of X-ray backscatter imaging based on virtual training dataset
2024-Aug-12, Optics express IF:3.2Q2
研究论文 本文介绍了一种基于虚拟训练数据集的X射线背散射图像深度学习恢复算法 利用虚拟训练数据集生成大量卷积图像进行深度学习训练,无需手动标注 NA 研究X射线背散射图像的恢复技术 X射线背散射图像 计算机视觉 NA 深度学习 NA 图像 大量虚拟生成的卷积图像
3129 2024-11-23
Ground-to-air aircraft infrared image deblurring based on imaging degradation simulation
2024-Aug-12, Optics express IF:3.2Q2
研究论文 本文提出了一种基于成像退化模拟的地对空飞机红外图像去模糊方法 创新性地提出了一种简单的全链路成像退化模拟方法,用于生成丰富的模糊-清晰图像对,并通过预训练和微调提升神经网络在特定场景下的去模糊性能 需要选择与场景退化模式匹配的预训练数据集,且模型在处理真实图像时仍存在一定局限性 解决特定场景下红外图像去模糊问题 地对空飞机红外图像 计算机视觉 NA 成像退化模拟 神经网络 图像 通过模拟方法生成的丰富模糊-清晰图像对
3130 2024-11-23
Anti-noise performance analysis in amplitude-modulated collinear holographic data storage using deep learning
2024-Aug-12, Optics express IF:3.2Q2
研究论文 研究了在幅度调制同轴全息数据存储系统中使用深度学习进行抗噪性能分析 提出了一种使用端到端卷积神经网络分析编码数据页噪声抵抗能力的方法 NA 提高幅度调制同轴全息数据存储系统的数据读取准确性和可靠性 幅度调制同轴全息数据存储系统中的噪声和误码率 机器学习 NA 深度学习 卷积神经网络 图像 NA
3131 2024-11-23
Wide-field imaging and recognition through cascaded complex scattering media
2024-Aug-12, Optics express IF:3.2Q2
研究论文 本文探讨了通过级联复杂散射介质实现宽场成像和识别的挑战,并提出了一种基于SMixerNet的深度学习方法 本文提出了一种基于SMixerNet的深度学习方法,通过参数自由的矩阵转置实现广泛的感受野,减少了参数密集的需求 NA 探索通过级联复杂散射介质实现宽场成像和识别的挑战 通过多模光纤和混浊介质实现宽场成像和病理筛查 计算机视觉 NA 深度学习 SMixerNet 图像 大量数据集
3132 2024-11-23
Enhanced single-frame interferometry via hybrid conv-transformer architecture for ultra-precise phase retrieval
2024-Aug-12, Optics express IF:3.2Q2
研究论文 本文介绍了一种新的深度学习架构TECD-PSNet,用于高保真干涉图重建和精确相位恢复 提出了Transformer编码器-卷积解码器相移网络(TECD-PSNet),结合了Transformer块的全局描述能力和卷积块的高效特征提取能力,并引入了残差局部负反馈增强机制 NA 提高动态单帧干涉测量中相位恢复的精度和适应性 干涉图和相位恢复 计算机视觉 NA 深度学习 Transformer Encoder-Convolution Decoder 图像 NA
3133 2024-11-23
Underwater polarization image de-scattering utilizing a physics-driven deep learning method
2024-Aug-12, Optics express IF:3.2Q2
研究论文 本文提出了一种利用物理驱动的深度学习方法进行水下偏振图像去散射的方法 结合主动偏振成像模型与深度学习,设计了偏振特征细化块,直接预测偏振相关参数,无需先验参数和手动估计 NA 解决现有基于学习的方法缺乏可解释性和泛化性的问题 水下偏振图像的去散射 计算机视觉 NA 深度学习 深度学习网络 图像 多组不同材料和不同浑浊条件下的实验结果
3134 2024-11-23
High-dimensional signal encoding and decoding method based on multi-ring perfect vortex beam
2024-Aug-12, Optics express IF:3.2Q2
研究论文 研究提出了一种基于多环完美涡旋光束的高维信号编码与解码方法 通过叠加多个完美涡旋光束创建多环完美涡旋光束,并引入机器学习方法优化编码和解码过程 NA 提升自由空间光通信的通道容量和解码准确性 多环完美涡旋光束的编码与解码技术 光学通信 NA 机器学习 深度学习 光束 NA
3135 2024-11-23
SDD-Net: self-supervised dual-domain dual-path single-pixel imaging
2024-Aug-12, Optics express IF:3.2Q2
研究论文 提出了一种自监督的双域双路径单像素成像方法 采用自监督学习方法,无需实际标签即可重建目标图像,并通过双域约束和结构-纹理双路径引导网络恢复图像的结构和纹理信息 未提及具体限制 解决现有单像素成像方法在复杂场景或特定应用中成像细节不足的问题 单像素成像技术 计算机视觉 NA 自监督学习 SDD-Net 图像 未提及具体样本数量
3136 2024-11-23
Mechanism-based organization of neural networks to emulate systems biology and pharmacology models
2024-05-27, Scientific reports IF:3.8Q1
研究论文 本文通过重新组织神经网络层以模拟机制模型的结构,展示了在药理学相互作用研究中提高训练率和预测准确性的方法 提出了一种通过重新组织神经网络层以模拟机制模型结构的方法,从而提高训练率和预测准确性,同时保持机制模拟的可解释性 NA 探索如何通过重新组织神经网络层来提高深度学习模型的训练率和预测准确性,同时保持机制模型的可解释性 研究阿片类药物与纳洛酮之间的药理学相互作用 机器学习 NA 深度学习 神经网络 NA NA
3137 2024-11-23
Computer vision digitization of smartphone images of anesthesia paper health records from low-middle income countries
2024-May-07, BMC bioinformatics IF:2.9Q1
研究论文 本文展示了使用计算机视觉软件从低至中等收入国家的智能手机拍摄的麻醉纸质健康记录中数字化手写手术数据的创新应用 本文的创新点在于使用计算机视觉技术数字化低至中等收入国家麻醉纸质记录中的手写数据,并改进了深度学习模型 本文的局限性在于仅在正常摄影条件下进行了测试,且生理数据的总体准确性为85.2% 本文的研究目的是提高低至中等收入国家医疗从业者对数字化数据的访问 本文的研究对象是低至中等收入国家的麻醉纸质健康记录中的手写数据 计算机视觉 NA 计算机视觉技术 YOLOv8模型 图像 来自基加利大学教学医院的麻醉纸质记录
3138 2024-11-23
Transcriptome-based deep learning analysis identifies drug candidates targeting protein synthesis and autophagy for the treatment of muscle wasting disorder
2024-Apr, Experimental & molecular medicine
研究论文 本研究通过转录组深度学习分析,识别出针对蛋白质合成和自噬的药物候选物,用于治疗肌肉萎缩症 本研究首次发现dimenhydrinate(一种由8-氯茶碱和苯海拉明组成的药物)作为治疗肌肉萎缩症的潜在疗法,并通过体外和体内实验验证了其促进肌肉再生的效果 本研究主要集中在dimenhydrinate的潜在治疗效果上,未详细探讨其长期使用的可能副作用和安全性 本研究的目的是通过转录组分析和深度学习技术,识别出新的药物候选物,用于治疗肌肉萎缩症 本研究主要关注癌症形成和5-FU化疗诱导的肌肉萎缩相关的基因表达特征,以及dimenhydrinate在肌肉再生中的作用 机器学习 肌肉萎缩症 转录组分析 深度学习 基因表达数据 包括体外实验中的肌肉祖细胞和体内实验中的多种肌肉萎缩模型动物
3139 2024-11-23
Advancing smart city factories: enhancing industrial mechanical operations via deep learning techniques
2024, Frontiers in artificial intelligence IF:3.0Q2
研究论文 本文介绍了一种利用长短期记忆深度学习模型来实时监控和缓解工业环境中异常情况的创新方法 本文提出的模型在检测异常方面具有高精度,并能自动提出或实施补救措施,显著提高了操作效率 NA 提高工业机械操作的效率和可持续性 工业环境中的异常检测和缓解 机器学习 NA 深度学习 长短期记忆(LSTM) 数据 NA
3140 2024-11-23
Diagnostic performance of artificial intelligence in detecting oral potentially malignant disorders and oral cancer using medical diagnostic imaging: a systematic review and meta-analysis
2024, Frontiers in oral health IF:3.0Q1
meta-analysis 本文通过系统综述和荟萃分析评估了人工智能在医学诊断影像中检测口腔潜在恶性病变和口腔癌的诊断性能 本文首次系统性地评估了AI算法在口腔癌检测中的诊断准确性,并发现深度学习架构,特别是卷积神经网络,在检测口腔潜在恶性病变和口腔癌方面表现出色 本文仅评估了已发表的研究,可能存在发表偏倚;此外,研究间的异质性较大,可能影响结果的普适性 评估AI驱动的诊断方法在医学影像中检测口腔潜在恶性病变和口腔癌的诊断准确性 口腔潜在恶性病变和口腔癌 machine learning 口腔癌 NA CNN image 筛选了296篇文章,包括55项研究进行定性综合,选择了18项研究进行荟萃分析
回到顶部