深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 12022 篇文献,本页显示第 3601 - 3620 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
3601 2024-12-17
Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation
2024-02, Computers in biology and medicine IF:7.0Q1
研究论文 本研究利用生成式深度学习模型生成批量RNA-Seq基因表达数据,并将其用于数据增强 首次使用生成对抗网络(GAN)和扩散模型(DM)生成高质量的批量RNA-Seq基因表达数据,并通过数据增强显著提升了分类模型的性能 未提及具体的局限性 开发一种基于生成式深度学习模型的方法,用于生成高质量的批量RNA-Seq基因表达数据,以增强下游任务的性能和可靠性 批量RNA-Seq基因表达数据 机器学习 NA RNA-Seq 生成对抗网络(GAN)、扩散模型(DM) 基因表达数据 使用了迄今为止最大的数据集进行模型训练 NA NA NA NA
3602 2024-12-17
Pancreatic cancer pathology image segmentation with channel and spatial long-range dependencies
2024-02, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种用于胰腺癌病理图像分割的通道和空间自注意力模块,以有效捕捉长距离特征依赖 引入了通道和空间自注意力模块,能够高效捕捉通道和空间上的长距离特征依赖,并提出了重新加权的交叉熵损失来缓解长尾分布对性能的影响 未提及 提高胰腺癌病理图像分割的准确性,以辅助病理学家实现更好的治疗效果 胰腺癌病理图像 数字病理学 胰腺癌 深度学习 自注意力机制 图像 使用了PCPI数据集和GlaS挑战数据集 NA NA NA NA
3603 2024-12-17
Medical image identification methods: A review
2024-02, Computers in biology and medicine IF:7.0Q1
综述 本文综述了医学图像识别方法,分析和总结了机器学习、深度学习、卷积神经网络、迁移学习等技术在医学图像分析中的应用 强调了不同方法在医学图像分析中的最新进展和贡献,并总结了不同应用场景下的应用 未具体讨论每种方法的局限性 提供医学图像识别方法的全面概述,并探讨未来研究方向 医学图像识别方法及其在不同医学图像分析任务中的应用 计算机视觉 NA 机器学习、深度学习、卷积神经网络、迁移学习 卷积神经网络 图像 NA NA NA NA NA
3604 2024-12-17
A deep learning model for Alzheimer's disease diagnosis based on patient clinical records
2024-02, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种基于患者临床记录的深度学习模型,用于阿尔茨海默病(AD)的诊断 本文的创新点在于使用深度学习模型对AD风险因素进行分类,以减少误诊的影响 本文未详细说明所使用的重平衡方法和模型调优的具体细节 开发一种使用痴呆患者临床数据的深度学习模型,用于分类是否患有AD 痴呆患者的临床记录 机器学习 阿尔茨海默病 深度学习 神经网络模型 文本 未具体说明样本数量 NA NA NA NA
3605 2024-12-17
Deep-Orga: An improved deep learning-based lightweight model for intestinal organoid detection
2024-02, Computers in biology and medicine IF:7.0Q1
研究论文 提出了一种基于YOLOX的轻量级深度学习模型Deep-Orga,用于自动化评估肠道类器官的形态 提出了Deep-Orga模型,通过改进模块提升了模型在肠道类器官检测中的性能 未提及具体的技术局限性 自动化评估类器官形态,减轻专业人员的劳动压力 肠道类器官 计算机视觉 NA 深度学习 YOLOX 图像 肠道类器官数据集 NA NA NA NA
3606 2024-12-17
Learning with limited annotations: A survey on deep semi-supervised learning for medical image segmentation
2024-02, Computers in biology and medicine IF:7.0Q1
综述 本文综述了最近提出的用于医学图像分割的半监督学习方法,并总结了技术新颖性和实证结果 本文总结了半监督学习在医学图像分割中的技术新颖性,并分析了现有方法的局限性和未解决的问题 本文讨论了现有半监督学习方法的局限性和几个未解决的问题 探讨在有限标注情况下,半监督学习在医学图像分割中的应用 医学图像分割任务 计算机视觉 NA 半监督学习 深度学习模型 图像 NA NA NA NA NA
3607 2024-12-17
Deep learning innovations in diagnosing diabetic retinopathy: The potential of transfer learning and the DiaCNN model
2024-02, Computers in biology and medicine IF:7.0Q1
研究论文 本文介绍了一种基于深度学习的新方法,通过迁移学习和DiaCNN模型提高糖尿病视网膜病变(DR)的诊断精度 本文的创新点在于引入了迁移学习技术,利用InceptionResNetv2和Inceptionv3模型进行特征提取和微调,并提出了专门用于眼病分类的DiaCNN模型 NA 提高糖尿病视网膜病变的诊断精度,减少因DR导致的失明 糖尿病视网膜病变及其他眼病的诊断 计算机视觉 糖尿病视网膜病变 深度学习 CNN 图像 使用了包含八种不同眼病类别的Ocular Disease Intelligent Recognition (ODIR)数据集 NA NA NA NA
3608 2024-12-17
Is fragment-based graph a better graph-based molecular representation for drug design? A comparison study of graph-based models
2024-02, Computers in biology and medicine IF:7.0Q1
研究论文 本文比较了基于片段的图表示与传统图表示在药物设计中的效果 提出了基于片段的图表示方法,并通过实验验证其在数据有限情况下的优势 在大量训练数据的情况下,基于片段的分子图表示不一定优于传统方法 评估基于片段的图表示在药物设计中的有效性 比较八种基于深度学习算法的模型在12个基准数据集上的预测能力 机器学习 NA 图神经网络(GNNs) GCN, AttentiveFP, D-MPNN, PharmHGT 分子数据 12个基准数据集 NA NA NA NA
3609 2024-12-17
Improving brain age prediction with anatomical feature attention-enhanced 3D-CNN
2024-02, Computers in biology and medicine IF:7.0Q1
研究论文 提出了一种基于解剖特征注意力增强的3D卷积神经网络,用于改进从结构磁共振成像数据预测脑年龄 引入了解剖特征注意力(AFA)模块,有效捕捉显著的解剖特征,并结合深度卷积特征,简化了深度卷积特征的提取过程 未提及具体的技术局限性 改进从结构磁共振成像数据预测脑年龄的准确性 从结构磁共振成像数据中提取的解剖特征和深度卷积特征 计算机视觉 NA 深度学习 3D卷积神经网络(3D-CNN) 图像 2501个样本 NA NA NA NA
3610 2024-12-17
Large-scale genomic survey with deep learning-based method reveals strain-level phage specificity determinants
2024-01-02, GigaScience IF:11.8Q1
研究论文 本研究提出了一种基于深度学习的SpikeHunter方法,用于大规模分析噬菌体编码的尾丝蛋白,揭示了噬菌体特异性的决定因素 首次使用深度学习方法(基于ESM-2蛋白语言模型)对大规模噬菌体尾丝蛋白进行分析,揭示了尾丝蛋白在决定噬菌体宿主范围中的关键作用 NA 研究噬菌体特异性的决定因素,为噬菌体疗法提供指导 噬菌体编码的尾丝蛋白及其与细菌多糖受体的相互作用 机器学习 NA 深度学习 ESM-2蛋白语言模型 基因组数据 787,566个细菌基因组,来自5种高致病性抗生素抗性病原体 NA NA NA NA
3611 2024-12-17
Stratum corneum nanotexture feature detection using deep learning and spatial analysis: a noninvasive tool for skin barrier assessment
2024-Jan-02, GigaScience IF:11.8Q1
研究论文 本文提出了一种基于深度学习和空间分析的皮肤屏障评估方法,用于检测角质层纳米纹理特征 本文创新性地结合了深度学习目标检测器和空间分析算法,开发了一种精确计算CNO密度的方法,称为有效角质层地形指数(ECTI) 本文的局限性在于样本量相对较小,且仅针对特应性皮炎患者和健康对照组 开发一种非侵入性工具,用于评估皮肤屏障功能,并区分不同严重程度的特应性皮炎 特应性皮炎患者和健康对照组的角质层纳米纹理特征 计算机视觉 皮肤疾病 深度学习 目标检测器 图像 45名特应性皮炎患者和15名健康对照组,共1000多张角质层纳米纹理图像 NA NA NA NA
3612 2024-12-17
Learning a generalized graph transformer for protein function prediction in dissimilar sequences
2024-Jan-02, GigaScience IF:11.8Q1
研究论文 本文提出了一种名为GALA的新方法,结合图变换器架构和注意力池化模块,用于蛋白质功能预测,并通过对抗学习和标签嵌入对齐来提高模型的泛化能力 GALA方法通过对抗学习和标签嵌入对齐,确保了在不同环境下的表示不变性,显著提高了对非同源蛋白质功能预测的泛化能力 NA 开发一种能够对非同源蛋白质进行功能预测的深度学习方法 蛋白质序列和结构 机器学习 NA 图变换器架构、对抗学习、注意力池化模块 图变换器 序列、结构 来自PDB数据库和Swiss-Prot数据库的数据集 NA NA NA NA
3613 2024-12-17
Forecasting air pollution with deep learning with a focus on impact of urban traffic on PM10 and noise pollution
2024, PloS one IF:2.9Q1
研究论文 本研究使用带有长短期记忆单元(LSTM)的循环神经网络(RNN)模型,预测斯科普里多个地点的PM10颗粒物水平,并分析城市交通对空气和噪音污染的影响 本研究首次利用深度学习模型预测多个地点的PM10水平,并分析了城市交通对空气和噪音污染的影响 研究仅限于斯科普里的数据,且未探讨其他可能影响空气污染的因素 预测空气污染水平并分析城市交通对其的影响 PM10颗粒物水平及城市交通对空气和噪音污染的影响 机器学习 NA NA RNN, LSTM 数据 多个地点的历史空气质量测量数据及气象条件数据 NA NA NA NA
3614 2024-12-17
CISepsis: a causal inference framework for early sepsis detection
2024, Frontiers in cellular and infection microbiology IF:4.6Q1
研究论文 本文提出了一种基于因果推理的早期脓毒症检测方法,通过消除混杂因素的影响来提高模型的预测准确性 本文的创新点在于引入了因果推理框架,通过后门调整和工具变量方法消除混杂因素的影响,从而更准确地捕捉脓毒症的因果关系 本文的局限性在于未来研究需要进一步探索特定指标或治疗干预对脓毒症的影响,并验证该方法在临床应用中的潜力 本文的研究目的是提高早期脓毒症检测的准确性,增强模型的泛化能力、鲁棒性和可解释性 本文的研究对象是脓毒症的早期预测 机器学习 脓毒症 因果推理 NA 结构化数据和非结构化数据 使用了MIMIC-IV数据集 NA NA NA NA
3615 2024-12-16
Relationship between the volume of ventricles, brain parenchyma and neurocognition in children after hydrocephalus treatment
2024-Dec-14, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
研究论文 研究评估了脑积水治疗后儿童脑室和脑实质体积与神经认知功能之间的关系 利用深度学习框架对术后T1w MR图像进行分析,展示了其在预测患者术后恢复中的潜力 样本量较小,且仅限于10岁以下的儿童 评估脑积水治疗后儿童的术后恢复过程,特别是脑实质和脑室体积与神经认知功能之间的关系 接受脑积水治疗的52名10岁以下儿童 NA NA T1w MR图像 深度学习框架 图像 52名10岁以下儿童 NA NA NA NA
3616 2024-12-16
The top 100 most-cited articles on artificial intelligence in breast radiology: a bibliometric analysis
2024-Dec-12, Insights into imaging IF:4.1Q1
综述 本文对人工智能在乳腺放射学领域中最具影响力的100篇高被引文章进行了文献计量分析 本文通过文献计量分析,总结了人工智能在乳腺放射学领域中最具影响力的研究成果和趋势 本文仅基于文献计量分析,未涉及具体技术的深入研究 识别人工智能在乳腺影像学中最具影响力的出版物 人工智能在乳腺放射学领域的研究文献 计算机视觉 乳腺癌 NA NA NA NA NA NA NA NA
3617 2024-12-16
Non-invasive eye tracking and retinal view reconstruction in free swimming schooling fish
2024-Dec-12, Communications biology IF:5.2Q1
研究论文 本研究介绍了一种非侵入性技术,用于在大型3D竞技场中跟踪和重建自由游泳鱼类的视网膜视图,无需行为训练 该方法结合了多摄像头角度、深度学习进行3D鱼类姿态重建、透视变换和眼动追踪,实现了非侵入性的3D眼动追踪 研究仅在两条鱼的数据上进行了验证,未来需要扩展到更多样本以验证其普适性 开发一种非侵入性方法来研究自由游泳鱼类的视觉信息处理和注意力机制 自由游泳的鱼类及其在群体行为中的眼动和视网膜视图 计算机视觉 NA 深度学习 NA 视频 两条鱼 NA NA NA NA
3618 2024-12-16
Deep Learning Assisted Plasmonic Dark-Field Microscopy for Super-Resolution Label-Free Imaging
2024-Dec-11, Nano letters IF:9.6Q1
研究论文 本文提出了一种基于深度学习的等离子体暗场显微镜(DAPD),用于无标记超分辨率成像 通过结合等离子体暗场显微镜和深度学习辅助的图像重建,实现了单帧超分辨率成像,相较于传统暗场显微镜显著提高了空间分辨率 目前仅展示了2.8倍的分辨率提升,未来仍有改进空间 开发一种新型的无标记超分辨率成像技术 无标记样本的暗场显微图像 计算机视觉 NA 等离子体暗场显微镜 卷积神经网络(CNN) 图像 多种无标记样本 NA NA NA NA
3619 2024-12-16
Removing Adversarial Noise in X-ray Images via Total Variation Minimization and Patch-Based Regularization for Robust Deep Learning-based Diagnosis
2024-Dec, Journal of imaging informatics in medicine
研究论文 本文提出了一种利用总变差最小化和基于块的正则化方法来去除X射线图像中的对抗噪声,以提高基于深度学习的诊断模型的鲁棒性 本文创新性地引入了总变差最小化方法来对抗对抗噪声,显著提高了模型在对抗攻击下的诊断准确性 本文仅以COVID-19诊断为案例研究,未探讨该方法在其他疾病诊断中的应用效果 提高基于深度学习的放射学疾病诊断模型在对抗攻击下的鲁棒性 COVID-19肺炎、非COVID肺炎和无肺炎的肺部X射线图像 计算机视觉 肺部疾病 总变差最小化 CNN 图像 包含无肺炎、COVID-19肺炎和非COVID肺炎病例的肺部X射线图像 NA NA NA NA
3620 2024-12-16
ERL-ProLiGraph: Enhanced representation learning on protein-ligand graph structured data for binding affinity prediction
2024-Dec, Molecular informatics IF:2.8Q2
研究论文 本文提出了一种基于深度学习的蛋白质-配体结合亲和力预测方法ERL-ProLiGraph,通过图结构数据增强表示学习 该方法创新性地使用图表示法来表示蛋白质和配体,旨在从两者的结构信息中学习以提高结合亲和力预测的准确性 NA 开发一种高效且更准确的蛋白质-配体结合亲和力预测方法,以加速药物发现过程 蛋白质-配体结合亲和力 机器学习 NA 深度学习算法 NA 图结构数据 NA NA NA NA NA
回到顶部