本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21 | 2025-05-17 |
Efficacy of artificial intelligence in reducing miss rates of GI adenomas, polyps, and sessile serrated lesions: a meta-analysis of randomized controlled trials
2024-May, Gastrointestinal endoscopy
IF:6.7Q1
DOI:10.1016/j.gie.2024.01.004
PMID:38184117
|
meta-analysis | 该研究通过荟萃分析评估人工智能在降低胃肠道腺瘤、息肉和无蒂锯齿状病变漏诊率方面的效果 | 首次通过荟萃分析全面评估AI在多种胃肠道病变检测中的效果,证实AI可显著降低漏诊率 | 未观察到AI对晚期腺瘤检测效果的显著改善,且纳入研究数量有限(仅7项随机对照试验) | 评估人工智能在胃肠道内窥镜检查中对病变检出率的改善效果 | 胃肠道腺瘤、息肉和无蒂锯齿状病变 | digital pathology | gastrointestinal disease | AI-assisted endoscopic image analysis | CNN | endoscopic images | 7项随机对照试验的汇总数据 |
22 | 2025-05-17 |
Geriatric depression and anxiety screening via deep learning using activity tracking and sleep data
2024-02, International journal of geriatric psychiatry
IF:3.6Q1
DOI:10.1002/gps.6071
PMID:38372966
|
研究论文 | 本研究探讨了使用深度学习模型通过活动追踪和睡眠数据筛查老年抑郁和焦虑的可行性 | 首次开发了基于活动追踪数据的混合输入深度学习模型,用于老年抑郁和焦虑的多标签识别 | 研究依赖于消费级腕戴活动追踪器的数据,可能存在数据质量和一致性问题 | 探索使用深度学习模型通过活动追踪数据识别老年抑郁和焦虑的可行性 | 老年抑郁和焦虑患者 | 机器学习 | 老年疾病 | 深度学习 | CNN, LSTM, ResNet | 时间序列数据(步数和睡眠阶段)和非时间序列数据(抑郁和焦虑评估分数) | NA |
23 | 2025-05-17 |
Scoping Review of Deep Learning Techniques for Diagnosis, Drug Discovery, and Vaccine Development in Leishmaniasis
2024, Transboundary and emerging diseases
IF:3.5Q1
DOI:10.1155/2024/6621199
PMID:40303156
|
综述 | 本文对深度学习技术在利什曼病的诊断、药物发现和疫苗开发中的应用进行了范围综述 | 首次对深度学习在利什曼病领域的应用进行全面综述,填补了该领域的研究空白 | 仅对现有文献进行了分析,未进行新的实验验证 | 探讨深度学习技术在利什曼病领域的应用现状和未来发展方向 | 利什曼病的诊断、药物发现和疫苗开发 | 机器学习 | 利什曼病 | 深度学习 | NA | NA | NA |
24 | 2025-05-16 |
An Ensemble Deep Learning Algorithm for Structural Heart Disease Screening Using Electrocardiographic Images: PRESENT SHD
2024-Dec-27, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.10.06.24314939
PMID:39417095
|
研究论文 | 开发并验证了一种名为PRESENT-SHD的集成深度学习算法,用于通过12导联心电图图像自动检测和预测多种结构性心脏病 | 利用集成深度学习方法从心电图图像中自动检测多种结构性心脏病,并在多个医院和人群研究中验证其性能 | 研究主要依赖于特定医院和人群的数据,可能在其他人群中的泛化能力有待进一步验证 | 开发一种自动化工具,用于结构性心脏病的早期筛查和风险分层 | 结构性心脏病患者和普通人群 | 数字病理学 | 心血管疾病 | 深度学习 | CNN, XGBoost | 图像 | 261,228份心电图来自93,693名患者,并在11,023名个体中进行了验证 |
25 | 2025-05-16 |
RNA language models predict mutations that improve RNA function
2024-12-05, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-54812-y
PMID:39638800
|
研究论文 | 本文介绍了一个名为GARNET的新数据库,用于RNA结构和功能分析,并利用该数据库开发了序列和结构感知的RNA生成模型 | 提出了GARNET数据库,结合GTDB参考生物的实验和预测最佳生长温度,开发了序列和结构感知的RNA生成模型,并成功预测了提高大肠杆菌核糖体热稳定性的突变 | RNA结构预测仍受限于高质量参考数据的缺乏 | 探索RNA序列、结构和功能之间的联系 | RNA序列和结构 | 自然语言处理 | NA | GPT-like模型 | GPT | RNA序列数据 | GTDB参考生物的RNA序列 |
26 | 2025-05-16 |
Development and validation of a deep learning model for predicting gastric cancer recurrence based on CT imaging: a multicenter study
2024-Dec-01, International journal of surgery (London, England)
DOI:10.1097/JS9.0000000000001627
PMID:38896865
|
research paper | 开发和验证了一种基于CT影像的深度学习模型,用于预测胃癌术后复发 | 提出了一种结合深度学习特征和临床特征的融合模型(DLFS),用于准确预测胃癌术后复发风险 | 研究为回顾性设计,可能存在选择偏倚 | 预测胃癌患者的术后复发风险 | 2813名接受根治性手术的胃癌患者 | digital pathology | gastric cancer | CT imaging | Resnet50 | image | 2813名患者 |
27 | 2025-05-16 |
RNA language models predict mutations that improve RNA function
2024-Sep-16, bioRxiv : the preprint server for biology
DOI:10.1101/2024.04.05.588317
PMID:38617247
|
研究论文 | 该研究创建了一个名为GARNET的新数据库,用于RNA结构和功能分析,并开发了一种类似GPT的RNA语言模型,以预测提高RNA功能的突变 | 创建GARNET数据库,结合GTDB基因组数据与生物生长温度信息,开发了重叠三连体标记化的RNA生成模型,用于预测增强RNA功能的突变 | RNA结构预测目前仍缺乏充足的高质量参考数据 | 理解RNA序列、结构与功能之间的联系 | RNA序列及其功能 | 自然语言处理 | NA | 深度学习,RNA生成模型 | GPT-like语言模型 | RNA序列数据 | GTDB基因组数据中的RNA序列 |
28 | 2025-05-16 |
Evaluating cell type deconvolution in FFPE breast tissue: application to benign breast disease
2024-Sep, NAR genomics and bioinformatics
IF:4.0Q1
DOI:10.1093/nargab/lqae098
PMID:40162103
|
research paper | 评估FFPE乳腺组织中细胞类型去卷积方法的应用,特别是在良性乳腺疾病中的表现 | 构建了乳腺组织的单细胞RNA-seq参考数据,测试了多种去卷积方法,并发现深度学习为基础的Scaden方法在FFPE伪影影响下表现最优 | FFPE伪影显著影响了去卷积方法的性能,RMSE在0.04至0.17之间波动 | 优化从FFPE样本中定义单个细胞类型组成的策略 | 乳腺组织,特别是良性乳腺疾病样本 | digital pathology | breast cancer | RNA-seq, single-cell RNA-seq | deep learning (Scaden) | RNA-seq data | 62个良性乳腺疾病RNA-seq样本 |
29 | 2025-05-16 |
Comparing Artificial Intelligence-Based Versus Conventional Endotracheal Tube Monitoring Systems in Clinical Practice
2024-07-24, Studies in health technology and informatics
DOI:10.3233/SHTI240230
PMID:39049336
|
研究论文 | 本研究开发了一种基于深度学习和人工智能的气管插管监测系统,并与传统方法进行了比较评估 | 提出了一种新型的AI监测系统,用于实时检测气管插管移位或脱落,相比传统方法具有更高的及时性和准确性 | 研究尚未完成,实际效果需要通过后续随机交叉实验验证 | 评估AI监测系统在气管插管管理中的有效性,促进医疗护理领域的创新应用 | 气管插管患者 | 医疗人工智能 | NA | 深度学习 | 深度学习模型(未指定具体类型) | 临床监测数据 | NA(研究尚未完成) |
30 | 2025-05-16 |
Deep Learning for Predicting Phlebitis in Patients with Intravenous Catheters
2024-07-24, Studies in health technology and informatics
DOI:10.3233/SHTI240231
PMID:39049337
|
research paper | 该研究提出了一种深度学习模型,用于预测外周静脉导管(PIVC)插入患者的静脉炎 | 利用深度学习模型预测静脉炎,并在大规模电子健康记录数据上验证其性能,准确率和AUC均表现优异 | 研究数据仅来自韩国首尔的一家医院,可能缺乏普遍性 | 开发一种有效的工具,用于早期检测静脉炎,以改善患者预后和医疗效率 | 接受外周静脉导管(PIVC)插入的患者 | machine learning | 静脉炎 | 电子健康记录数据分析 | 深度学习模型 | 电子健康记录数据 | 27,532次住院记录和70,293次PIVC事件 |
31 | 2025-05-16 |
ASPTF: A computational tool to predict abiotic stress-responsive transcription factors in plants by employing machine learning algorithms
2024-06, Biochimica et biophysica acta. General subjects
DOI:10.1016/j.bbagen.2024.130597
PMID:38490467
|
研究论文 | 开发了一个名为ASPTF的计算工具,通过机器学习算法预测植物中响应非生物胁迫的转录因子 | 结合了浅层学习和深度学习算法,并采用特征选择技术提高预测准确性 | 未提及模型在跨物种应用中的泛化能力 | 识别与植物非生物胁迫响应相关的转录因子,以培育抗逆作物品种 | 植物转录因子 | 机器学习 | NA | 机器学习算法(包括浅层学习和深度学习) | LGBM(Light-Gradient Boosting Machine) | 序列数据 | 未明确提及具体样本数量 |
32 | 2025-05-16 |
Protocol for assessing neighborhood physical disorder using the YOLOv8 deep learning model
2024-03-15, STAR protocols
IF:1.3Q4
DOI:10.1016/j.xpro.2023.102778
PMID:38104313
|
研究论文 | 提出了一种使用YOLOv8深度学习模型定量评估邻里物理紊乱(PD)的协议 | 利用YOLOv8深度学习模型构建检测模型,为不同国家和地区评估PD提供方法学基础 | 未提及具体样本量或数据收集范围 | 开发定量评估邻里物理紊乱(PD)的方法 | 邻里物理紊乱(PD) | 计算机视觉 | NA | YOLOv8深度学习模型 | YOLOv8 | 街景图像 | NA |
33 | 2025-05-15 |
Regional, rural and remote medicine attracts students with a similar approach to learning in both the Northern and Southern hemisphere
2024-12, International journal of circumpolar health
IF:1.3Q4
DOI:10.1080/22423982.2024.2404274
PMID:39285655
|
研究论文 | 本研究比较了南北半球两个医学项目中学生的学习目标取向和学习特征,以探讨适合农村医疗环境的学生特质 | 首次在跨半球背景下比较农村医学项目学生的学习特征和目标取向 | 样本仅来自两个医学项目,可能无法代表所有农村医学学生 | 探讨适合农村医疗环境的学生学习特征和目标取向 | 263名医学学生(分别来自南北半球的两个医学项目) | 医学教育 | NA | 问卷调查(三种调查工具) | NA | 问卷调查数据 | 263名医学学生 |
34 | 2025-05-15 |
Monitoring Substance Use with Fitbit Biosignals: A Case Study on Training Deep Learning Models Using Ecological Momentary Assessments and Passive Sensing
2024-Dec, AI (Basel, Switzerland)
DOI:10.3390/ai5040131
PMID:40351335
|
研究论文 | 本研究探讨了使用Fitbit生物信号监测物质使用的可行性,并通过个性化机器学习和自监督学习技术提高了检测准确性 | 采用参与者特定的卷积神经网络(CNNs)结合自监督学习(SSL)来检测药物使用,以应对个体间数据异质性问题 | 样本量较小(仅9名参与者),限制了研究结果的普适性 | 开发一种基于可穿戴设备生物信号的物质使用实时监测系统 | 物质使用障碍患者 | 机器学习 | 物质使用障碍 | 自监督学习(SSL) | 1D-CNN | 生物信号数据 | 9名参与者 |
35 | 2025-05-15 |
Using Deep Learning to Suggest Treatment for Proximal Humerus Fractures
2024-11-22, Studies in health technology and informatics
DOI:10.3233/SHTI241080
PMID:39575796
|
research paper | 该研究开发了一个基于深度学习的模型,用于根据肱骨近端骨折的放射影像预测治疗类型 | 利用深度学习模型预测肱骨近端骨折的治疗类型,其准确性和观察者间可靠性超过了肩部外科医生的判断 | 模型仅在特定测试数据集上进行了验证,可能需要更多样化的数据以提高泛化能力 | 开发一个治疗决策支持系统,以加快急诊科对肱骨近端骨折的治疗决策 | 肱骨近端骨折患者 | digital pathology | 骨折 | 深度学习 | NA | image | NA |
36 | 2025-05-15 |
ECG classification via integration of adaptive beat segmentation and relative heart rate with deep learning networks
2024-Oct, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109062
PMID:39205344
|
research paper | 提出了一种先进的深度学习方法,用于准确分析心电图(ECG)信号,同时处理波形描绘和心跳类型分类任务 | 将自适应心跳分割方法和相对心率信息整合到深度学习模型中,显著提高了模型性能 | NA | 提高心电图信号分析的准确性,特别是在波形描绘和心跳类型分类方面 | 心电图信号 | machine learning | cardiovascular disease | deep learning | deep learning networks | ECG signal | PhysioNet QT Database, MIT-BIH Arrhythmia Database, and real-world wearable device data |
37 | 2025-05-15 |
TA-RNN: an attention-based time-aware recurrent neural network architecture for electronic health records
2024-06-28, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae264
PMID:38940180
|
研究论文 | 提出了一种基于注意力机制的时间感知循环神经网络架构TA-RNN,用于电子健康记录分析 | 提出了两种可解释的深度学习架构TA-RNN和TA-RNN-AE,通过时间嵌入处理临床访问间隔不规则问题,并采用双级注意力机制提高模型可解释性 | 模型性能仅在特定疾病(阿尔茨海默病)和特定数据集上验证 | 开发可解释的深度学习模型来预测患者临床结果 | 电子健康记录(EHR)数据 | 机器学习 | 阿尔茨海默病 | 深度学习 | RNN, TA-RNN, TA-RNN-AE | 电子健康记录 | ADNI和NACC数据集(阿尔茨海默病),MIMIC-III数据集(死亡率预测) |
38 | 2025-05-15 |
Histopathology Based AI Model Predicts Anti-Angiogenic Therapy Response in Renal Cancer Clinical Trial
2024-May-28, ArXiv
PMID:38855551
|
研究论文 | 本研究开发了一种基于深度学习的模型,通过组织病理学切片预测肾癌抗血管生成治疗的应答 | 提出了一种新型深度学习模型,能够从普遍存在的组织病理学切片中预测Angioscore,并生成可视化的血管网络以增强模型的可解释性 | ccRCC肿瘤具有高度异质性,且对多个区域进行测序采样不切实际 | 预测转移性透明细胞肾细胞癌(ccRCC)对抗血管生成治疗的应答 | 转移性透明细胞肾细胞癌(ccRCC)患者 | 数字病理学 | 肾癌 | 深度学习 | DL | 组织病理学图像 | 多个队列包括临床试验数据集 |
39 | 2025-05-15 |
DEEP IMAGE PRIOR WITH STRUCTURED SPARSITY (DISCUS) FOR DYNAMIC MRI RECONSTRUCTION
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
DOI:10.1109/isbi56570.2024.10635579
PMID:40352104
|
research paper | 提出了一种名为DISCUS的自监督深度学习方法,用于动态MRI图像重建 | DISCUS方法在深度图像先验基础上引入结构化稀疏性,无需指定流形维度即可发现描述帧间时间变化的低维流形 | 仅在三项数值研究中进行了验证,临床实际应用效果有待进一步验证 | 解决动态MRI中高质量训练数据不足的问题,提高图像重建质量 | 动态MRI图像序列 | 医学影像分析 | 心血管疾病 | 深度学习 | DISCUS(基于DIP改进的模型) | MRI图像序列 | 5例患者的回顾性欠采样单次LGE数据 |
40 | 2025-05-15 |
Deep learning assisted single particle tracking for automated correlation between diffusion and function
2024-Feb-02, Research square
DOI:10.21203/rs.3.rs-3716053/v1
PMID:38352328
|
research paper | 提出了一种名为DeepSPT的深度学习框架,用于快速高效地解释物体在2D或3D时间上的扩散行为 | DeepSPT能够从扩散行为中自动提取功能信息,无需人工干预,准确率高达95% | 未提及具体的技术限制或应用范围的局限性 | 研究目的是通过深度学习框架自动关联亚细胞扩散与功能信息 | 分子和细胞器在亚细胞环境中的扩散行为 | machine learning | NA | deep learning | NA | 2D或3D时间序列数据 | 未提及具体样本数量 |