本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 521 | 2025-10-06 |
Optical Coherence Tomography Versus Optic Disc Photo Assessment in Glaucoma Screening
2024-Aug-01, Journal of glaucoma
IF:2.0Q2
DOI:10.1097/IJG.0000000000002392
PMID:38546240
|
综述 | 比较光学相干断层扫描和视盘摄影在青光眼筛查中的优势与局限性 | 提出结合人工智能技术优化两种筛查方法的新方向,特别探讨使用OCT客观数据训练AI模型的潜力 | 基于文献综述而非原始研究,AI模型效果受训练数据质量限制 | 评估OCT和视盘摄影在青光眼筛查中的临床应用价值 | 青光眼筛查技术 | 医学影像分析 | 青光眼 | 光学相干断层扫描,视盘摄影,人工智能 | 深度学习模型 | 医学影像 | NA | NA | NA | 准确度,阳性预测值 | NA |
| 522 | 2025-10-06 |
Deep learning prediction of stroke thrombus red blood cell content from multiparametric MRI
2024-Aug, Interventional neuroradiology : journal of peritherapeutic neuroradiology, surgical procedures and related neurosciences
IF:1.5Q3
DOI:10.1177/15910199221140962
PMID:36437762
|
研究论文 | 本研究使用卷积神经网络通过多参数MRI图像预测缺血性卒中血栓中红细胞含量 | 首次使用深度学习模型基于多参数MRI定量预测卒中血栓红细胞含量,并开发数据增强技术提升模型性能 | 样本量相对有限(188个血栓图像切片),准确率仍有提升空间 | 评估卷积神经网络预测缺血性卒中血栓红细胞含量的能力 | 缺血性卒中患者血栓样本 | 医学影像分析 | 缺血性卒中 | 多参数MRI,三维多回波梯度回波序列,组织学分析 | CNN | MRI图像 | 188个血栓图像切片 | NA | 3层CNN | 准确率,AUC | NA |
| 523 | 2025-10-06 |
Improving Image Segmentation with Contextual and Structural Similarity
2024-Aug, Pattern recognition
IF:7.5Q1
DOI:10.1016/j.patcog.2024.110489
PMID:38645435
|
研究论文 | 提出上下文相似性损失和结构相似性损失来改进医学图像分割性能 | 通过显式建模体素间关系,提出两种新型损失函数来解决语义不一致预测问题 | 仅在特定医学图像数据集上验证,未涉及其他类型医学图像 | 改进医学图像分割的语义一致性 | 锥束CT图像中的颅颌面畸形和胰腺数据集 | 计算机视觉 | 颅颌面畸形, 胰腺疾病 | 锥束CT成像 | 深度学习分割模型 | 医学图像 | 临床CBCT数据集和公共胰腺数据集 | NA | NA | 语义保持能力评估 | NA |
| 524 | 2025-10-06 |
Dose robustness of deep learning models for anatomic segmentation of computed tomography images
2024-Jul, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.4.044005
PMID:39099642
|
研究论文 | 评估深度学习模型在CT图像解剖分割中对辐射剂量变化的鲁棒性 | 使用原始全剂量采集数据模拟低剂量CT扫描,无需重新扫描患者,并验证了与现有去噪方法的兼容性 | 需要进一步研究病灶分割方法的鲁棒性,并确定影响剂量鲁棒性的关键因素 | 评估现有分割模型对CT扫描辐射剂量变化的鲁棒性 | CT图像中的人体器官分割 | 医学影像分析 | NA | 计算机断层扫描(CT) | 深度学习模型 | CT图像 | 使用体模的真实CT扫描验证模拟准确性 | NA | 卷积神经网络(CNN), TotalSegmentator | Dice系数, Hausdorff距离 | NA |
| 525 | 2025-10-06 |
Distinct brain morphometry patterns revealed by deep learning improve prediction of post-stroke aphasia severity
2024-Jun-12, Communications medicine
IF:5.4Q1
DOI:10.1038/s43856-024-00541-8
PMID:38866977
|
研究论文 | 本研究使用深度学习分析全脑形态测量数据以改善卒中后失语症严重程度的预测 | 首次使用卷积神经网络识别与失语症严重程度相关的三维形态测量分布模式,超越了传统病灶分析 | 样本量相对有限(N=231),且仅针对慢性卒中患者 | 改善卒中后失语症严重程度的预测准确性 | 慢性卒中后失语症患者 | 医学影像分析 | 卒中后失语症 | 脑形态测量分析 | CNN, SVM | 脑影像数据,分割组织体积 | 231名慢性卒中患者 | NA | 卷积神经网络 | 平衡准确度,F1分数 | NA |
| 526 | 2025-10-06 |
Improving the Generalizability of Deep Learning for T2-Lesion Segmentation of Gliomas in the Post-Treatment Setting
2024-May-16, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering11050497
PMID:38790363
|
研究论文 | 本研究通过数据混合、迁移学习和空间正则化方法,提高深度学习模型对治疗后胶质瘤T2病灶分割的泛化能力 | 首次系统评估数据混合比例、迁移学习和空间正则化对治疗后胶质瘤T2病灶分割性能的影响 | 研究样本量相对有限,仅评估了24名疑似进展的患者 | 提高深度学习模型在治疗后胶质瘤T2病灶分割中的泛化性能 | 新诊断胶质瘤患者(208例)和接受治疗后的胶质瘤患者(221例) | 医学影像分析 | 胶质瘤 | T2 FLAIR MRI | 深度学习 | 医学影像 | 429例胶质瘤患者(208例新诊断,221例治疗后),评估集24例 | NA | NA | Dice系数, 敏感度, 95th Hausdorff距离 | NA |
| 527 | 2025-10-06 |
Artificial Intelligence-Guided Segmentation and Path Planning Software for Transthoracic Lung Biopsy
2024-05, Journal of vascular and interventional radiology : JVIR
IF:2.6Q2
DOI:10.1016/j.jvir.2024.02.006
PMID:38355040
|
研究论文 | 开发并验证用于经胸肺活检的AI引导分割和路径规划软件 | 结合3D-CNN进行肺部病灶检测和贝叶斯优化进行针道规划,为自动化活检提供新方法 | 回顾性研究,样本量有限,需要进一步前瞻性验证 | 验证AI软件在肺部病灶检测和活检路径规划中的性能 | 肺部结节患者 | 计算机视觉 | 肺癌 | CT扫描 | CNN | 医学影像 | 训练集:219例扫描(2147个结节);验证集:235例扫描(354个结节);路径验证:150例患者 | NA | 3D-CNN | AUC, 敏感度, 特异度, 角度偏差, 路径偏差 | NA |
| 528 | 2025-10-06 |
DeepN4: Learning N4ITK Bias Field Correction for T1-weighted Images
2024-Apr, Neuroinformatics
IF:2.7Q3
DOI:10.1007/s12021-024-09655-9
PMID:38526701
|
研究论文 | 提出了一种基于深度学习的N4ITK偏置场校正方法DeepN4,用于T1加权MRI图像的强度不均匀性校正 | 首次使用深度学习网络近似N4ITK偏置场校正算法,实现了可移植、灵活且完全可微分的偏置场校正方法 | 论文未明确说明网络的具体架构细节和计算效率对比 | 开发可移植且可微分的MRI偏置场校正方法,解决N4ITK在不同平台间的兼容性问题 | T1加权MRI图像的强度不均匀性校正 | 医学影像处理 | NA | MRI, 深度学习 | 深度学习网络 | T1加权MRI图像 | 来自72台不同扫描仪的8个独立队列,外加8个外部验证数据集 | NA | 朴素深度神经网络 | 峰值信噪比(PSNR) | NA |
| 529 | 2025-10-06 |
Random expert sampling for deep learning segmentation of acute ischemic stroke on non-contrast CT
2024-Feb-01, Journal of neurointerventional surgery
IF:4.5Q1
DOI:10.1136/jnis-2023-021283
PMID:38302420
|
研究论文 | 本研究探索了使用随机专家采样训练深度学习算法分割急性缺血性卒中非增强CT图像的方法 | 提出了随机专家采样训练方案,相比传统多数投票方法能更好地处理专家间标注差异 | 样本量相对有限,仅包含260例CT研究和33例外部队列验证 | 开发更准确的急性缺血性卒中非增强CT图像自动分割方法 | 急性缺血性卒中患者的非增强CT图像 | 医学图像分析 | 急性缺血性卒中 | 非增强CT成像,扩散加权成像(DWI) | 深度学习 | 医学图像 | 260例非增强CT研究(233名患者),外加33例外部验证病例 | NA | U-Net | Dice系数, 体积重叠度量, 距离分割度量, Spearman相关性 | NA |
| 530 | 2025-10-06 |
Automatic sleep staging based on 24/7 EEG SubQ (UNEEG medical) data displays strong agreement with polysomnography in healthy adults
2024-Dec, Sleep health
IF:3.4Q2
DOI:10.1016/j.sleh.2024.08.007
PMID:39406630
|
研究论文 | 基于24/7皮下脑电图数据的自动睡眠分期与多导睡眠图在健康成人中表现出高度一致性 | 首次使用UNEEG医疗的24/7皮下脑电图设备和深度学习模型U-SleepSQ进行自动睡眠分期 | 研究样本仅包含22名健康成年人,未涉及睡眠障碍患者 | 评估双通道皮下脑电图自动睡眠分期的性能 | 22名健康成年人,每人1-6次记录 | 医疗人工智能 | 睡眠医学 | 皮下脑电图(SubQ EEG), 多导睡眠图(PSG) | 深度学习 | 脑电图信号 | 22名健康成年人,共1-6次记录/人 | NA | U-SleepSQ(基于U-Sleep的微调模型) | 准确率, 特异性, 敏感性, kappa系数, F1分数, Cohen's κ系数, 宏F1分数, Bland-Altman分析 | NA |
| 531 | 2025-10-06 |
Multi-modality deep learning-based [68Ga]Ga-DOTA-FAPI-04 PET polar map generation: potential value in detecting reactive fibrosis after myocardial infarction
2024-Nov, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-024-06850-3
PMID:39060373
|
研究论文 | 本研究开发了一种基于多模态深度学习的[68Ga]Ga-DOTA-FAPI-04 PET极坐标图生成方法,用于检测心肌梗死后反应性纤维化 | 提出融合多模态图像补偿PET图像中心脏结构信息丢失的深度学习方法,提高极坐标图生成准确性 | 样本量相对有限(87例患者),需要进一步验证 | 提高[68Ga]Ga-DOTA-FAPI-04 PET极坐标图生成准确性,探索其在检测心肌梗死后反应性纤维化中的价值 | 87例ST段抬高型心肌梗死患者 | 医学影像分析 | 心血管疾病 | PET/MR成像,深度学习 | 深度学习模型 | 多模态医学影像(PET/MR图像) | 87例患者的133对[68Ga]Ga-DOTA-FAPI-04 PET/MR图像,其中26例用于纵向分析 | NA | NA | 准确性,相关系数(LVESV%, LVEDV%, LVEF%) | NA |
| 532 | 2024-10-02 |
Clarifications on the Differentiation of Vertebral Fractures Using Deep Learning Models
2024-Oct, Radiology
IF:12.1Q1
DOI:10.1148/radiol.241162
PMID:39352286
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 533 | 2025-10-06 |
Predicting the severity of mood and neuropsychiatric symptoms from digital biomarkers using wearable physiological data and deep learning
2024-09, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.108959
PMID:39089109
|
研究论文 | 本研究利用可穿戴设备采集的生理数据和深度学习技术,预测轻度认知障碍老年患者的神经精神症状和情绪障碍严重程度 | 结合传统数字生物标志物与自监督卷积自编码器提取的深度学习特征,实现对神经精神症状严重程度的日常预测 | 研究仅针对轻度认知障碍老年人群,样本代表性有限 | 开发基于可穿戴设备和深度学习的心理健康症状连续评估方法 | 轻度认知障碍老年患者 | 机器学习 | 老年疾病 | 可穿戴传感器数据采集 | 自监督卷积自编码器 | 生理数据 | 轻度认知障碍老年人群 | NA | 卷积自编码器 | 相关系数 | NA |
| 534 | 2025-10-06 |
A deep learning-driven discovery of berberine derivatives as novel antibacterial against multidrug-resistant Helicobacter pylori
2024-07-08, Signal transduction and targeted therapy
IF:40.8Q1
DOI:10.1038/s41392-024-01895-0
PMID:38972904
|
研究论文 | 利用图神经网络深度学习模型发现新型小檗碱衍生物作为抗耐药幽门螺杆菌的抗菌剂 | 首次采用图神经网络深度学习模型预测并验证具有3,13-二取代烯烃结构的小檗碱衍生物8作为新型抗幽门螺杆菌候选药物 | 研究主要聚焦于临床前验证,尚未进行人体临床试验 | 开发针对多重耐药幽门螺杆菌的新型抗菌药物 | 幽门螺杆菌(包括药物敏感和耐药菌株) | 药物发现 | 幽门螺杆菌感染 | 化学蛋白质组学技术 | 图神经网络 | 分子结构数据 | 13,638个分子组成的训练集 | NA | 图神经网络 | 最小抑菌浓度 | NA |
| 535 | 2025-10-06 |
Enhancing Hypotension Prediction in Real-time Patient Monitoring Through Deep Learning: A Novel Application of XResNet with Contrastive Learning and Value Attention Mechanisms
2024-Jul, Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )
DOI:10.1007/978-3-031-66538-7_5
PMID:39155989
|
研究论文 | 本研究提出了一种基于XResNet架构的深度学习模型,通过对比学习和值注意力机制增强实时患者监测中的低血压预测性能 | 首次将XResNet架构与对比学习和值注意力机制相结合,专门针对动脉血压波形信号分析进行优化 | NA | 提高实时患者监测中低血压预测的准确性和可靠性 | 动脉血压波形信号 | 医疗健康监测 | 低血压 | 深度学习 | XResNet | 生理信号波形数据 | NA | NA | XResNet | NA | NA |
| 536 | 2025-10-06 |
Dev-ResNet: automated developmental event detection using deep learning
2024-05-15, The Journal of experimental biology
IF:2.8Q2
DOI:10.1242/jeb.247046
PMID:38806151
|
研究论文 | 提出一种名为Dev-ResNet的小型高效3D卷积神经网络,用于自动检测发育生物学中的发育事件 | 开发了首个能够同时检测空间和时间特征的发育事件检测深度学习模型 | NA | 实现发育生物学中发育事件的自动化检测 | 大池塘蜗牛(Lymnaea stagnalis)的胚胎发育过程 | 计算机视觉 | NA | 生物成像 | CNN | 3D图像序列 | 10种不同的功能事件 | NA | ResNet | NA | NA |
| 537 | 2025-10-06 |
An accurate pediatric bone age prediction model using deep learning and contrast conversion
2024-Apr, Ewha medical journal
IF:0.3Q3
DOI:10.12771/emj.2024.e23
PMID:40703683
|
研究论文 | 本研究开发了一种结合深度学习模型和对比度转换技术的儿科骨龄预测模型 | 首次系统比较多种深度学习架构与对比度增强技术在儿科骨龄预测中的综合性能 | 仅使用左手X射线图像,未考虑其他影响因素;样本来源单一 | 提高儿科生长评估的准确性和临床决策支持 | 儿科患者左手X射线图像 | 计算机视觉 | 儿科发育疾病 | X射线成像,对比度转换技术 | CNN | 图像 | 包含骨龄和性别标注的儿科左手X射线图像数据集 | NA | ResNet50, VGG19, Inception V3, Xception | MAE, RMSE, PSNR, MSE, 变异系数, 对比噪声比 | NA |
| 538 | 2025-10-06 |
What is the role of artificial intelligence in general surgery?
2024-Apr, Ewha medical journal
IF:0.3Q3
DOI:10.12771/emj.2024.e22
PMID:40703691
|
综述 | 分析人工智能在普通外科中的应用现状及其与其他医学领域的差异 | 首次系统比较AI在普通外科与其他医学专科(如病理学、放射学、肿瘤学)应用差异,并提出针对普通外科的AI工具定制化路径 | 手术室中AI应用研究严重不足,缺乏足够证据支持,存在伦理责任问题需要解决 | 探讨人工智能在普通外科各阶段(术前、术中、术后)的应用潜力和挑战 | 普通外科临床实践流程及相关已发表研究 | 医学人工智能 | 外科疾病 | 深度学习 | 神经网络 | 临床数据 | NA | NA | NA | NA | NA |
| 539 | 2025-10-06 |
Time is encoded by methylation changes at clustered CpG sites
2024-Dec-05, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.03.626674
PMID:39677642
|
研究论文 | 通过超深度测序和深度学习分析揭示DNA甲基化在成簇CpG位点的变化如何编码时间信息 | 发现年龄依赖性DNA甲基化变化呈区域性发生在多个相邻CpG位点,并首次使用单分子模式进行年龄预测 | 研究主要基于血液样本,其他组织类型的适用性需要进一步验证 | 探索DNA甲基化变化作为时间测量机制的生物学原理 | 健康个体的血液样本 | 机器学习 | NA | 超深度测序,单分子DNA甲基化分析 | 深度学习 | DNA甲基化测序数据 | 300多份血液样本,包含10年纵向样本 | NA | NA | 中位误差 | NA |
| 540 | 2025-10-06 |
Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data
2024-Sep-10, Archives of osteoporosis
IF:3.1Q1
DOI:10.1007/s11657-024-01433-z
PMID:39256211
|
研究论文 | 本研究结合深度学习椎体骨折评分和有限人口统计数据开发了受试者级别的脊柱骨质疏松性骨折预测模型 | 将深度学习椎体骨折评分与基本人口统计协变量相结合进行受试者级别骨折预测 | 仅使用有限的人口统计数据 | 开发自动化椎体骨折筛查方法以改善预后 | 脊柱骨质疏松性骨折患者 | 计算机视觉 | 骨质疏松症 | 放射影像分析 | CNN, GAM | X光图像 | 大型X光片数据集 | NA | 卷积神经网络 | AUC-ROC | NA |