本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6181 | 2024-10-09 |
Correction to: Growing ecosystem of deep learning methods for modeling protein-protein interactions
2024-Jan-29, Protein engineering, design & selection : PEDS
DOI:10.1093/protein/gzae016
PMID:39377372
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
6182 | 2024-10-09 |
Automated Cell Lineage Reconstruction using Label-Free 4D Microscopy
2024-Jan-22, bioRxiv : the preprint server for biology
DOI:10.1101/2024.01.20.576449
PMID:38328064
|
研究论文 | 本文介绍了一种名为embGAN的深度学习管道,用于在无标记的3D时间序列显微镜成像中实现自动细胞检测和跟踪 | embGAN无需手动数据标注即可进行训练,学习到的检测具有高度的尺度不变性,并且在多个实验室和仪器的图像中具有良好的泛化能力 | NA | 开发一种自动化的细胞谱系重建方法 | 无标记的3D时间序列显微镜成像中的细胞检测和跟踪 | 计算机视觉 | NA | 深度学习 | GAN | 图像 | 多个实验室和仪器的图像 |
6183 | 2024-10-09 |
Breast Multiparametric MRI for Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: The BMMR2 Challenge
2024-01, Radiology. Imaging cancer
DOI:10.1148/rycan.230033
PMID:38180338
|
研究论文 | 描述了BMMR2挑战的设计、实施和结果,旨在通过多参数乳腺MRI预测新辅助化疗反应 | 识别了几种具有高预测性能的模型,进一步扩展了多参数乳腺MRI作为治疗反应早期标志物的价值 | NA | 通过多参数乳腺MRI识别基于图像的标志物,预测新辅助化疗后的病理完全反应 | 多参数乳腺MRI数据,包括扩散加权成像和动态对比增强MRI,以及临床数据 | 数字病理学 | 乳腺癌 | 多参数MRI | 深度学习和人工智能方法 | 图像 | 573例乳腺MRI研究,来自191名女性(平均年龄48.9岁±10.56) |
6184 | 2024-10-09 |
DGDRP: drug-specific gene selection for drug response prediction via re-ranking through propagating and learning biological network
2024, Frontiers in genetics
IF:2.8Q2
DOI:10.3389/fgene.2024.1441558
PMID:39371421
|
研究论文 | 本文提出了一种基于图神经网络(GNN)的药物特异性基因选择模型DGDRP,用于药物反应预测 | DGDRP通过路径知识增强的网络传播算法和GNN学习到的基因与药物目标嵌入相似性进行基因重排序,从而选择与药物机制相关的基因,提高了药物反应预测的准确性 | NA | 开发一种新的方法来提高药物反应预测的准确性,并发现有效的生物标志物 | 药物特异性基因的选择和药物反应预测 | 机器学习 | NA | 图神经网络(GNN) | GNN | 基因数据 | NA |
6185 | 2024-10-09 |
Deep learning-based Alzheimer's disease detection: reproducibility and the effect of modeling choices
2024, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2024.1360095
PMID:39371524
|
研究论文 | 本文研究了基于深度学习的阿尔茨海默病检测方法的再现性和建模选择的影响 | 本文探讨了数据增强技术和模型复杂度对阿尔茨海默病检测性能的影响,强调了这些常被忽视的因素的重要性 | 本文未详细讨论其他可能影响模型性能的因素,如数据质量和样本多样性 | 研究如何通过严格遵循最佳实践来确保机器学习在临床实践中的可靠性和再现性 | 阿尔茨海默病的检测 | 机器学习 | 阿尔茨海默病 | 磁共振成像 (MRI) | 3D卷积神经网络 (CNN) | 图像 | 使用了来自ADNI语料库的MRI数据进行二分类问题研究 |
6186 | 2024-10-09 |
Spiking representation learning for associative memories
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1439414
PMID:39371606
|
研究论文 | 本文介绍了一种新型脉冲神经网络(SNN),用于无监督表示学习和联想记忆操作 | 利用Hebbian突触和活动依赖的结构可塑性,结合Poisson脉冲发生器模型,实现了高效的表示学习和联想记忆操作 | NA | 解决人工脉冲神经网络在处理大规模现实数据集时的挑战 | 脉冲神经网络的表示学习和联想记忆操作 | 机器学习 | NA | Hebbian突触和活动依赖的结构可塑性 | 脉冲神经网络(SNN) | NA | NA |
6187 | 2024-10-09 |
The Deep Learning-Crop Platform (DL-CRoP): For Species-Level Identification and Nutrient Status of Agricultural Crops
2024, Research (Washington, D.C.)
DOI:10.34133/research.0491
PMID:39371687
|
研究论文 | 本文介绍了一种名为Deep Learning-Crop Platform (DL-CRoP)的深度学习平台,用于通过叶片、茎和根图像识别商业种植植物及其营养需求 | DL-CRoP平台通过卷积神经网络提取内在特征模式,并在识别任务中取得了显著成果。此外,通过引入多头注意力机制改进了氮缺乏分类的准确性 | 尽管DL-CRoP平台在多个案例中表现出色,但在某些情况下(如案例D)的准确率仍有提升空间 | 开发一种可靠的深度学习平台,用于精确识别农作物种类及其营养状态 | 商业种植的植物及其营养需求 | 计算机视觉 | NA | 卷积神经网络 | CNN | 图像 | 使用了Jammu University-Botany Image Database (JU-BID)中的植物图像数据集,具体样本数量未明确说明 |
6188 | 2024-10-09 |
A global model-agnostic rule-based XAI method based on Parameterized Event Primitives for time series classifiers
2024, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2024.1381921
PMID:39372662
|
研究论文 | 本文提出了一种基于参数化事件原语的全局模型无关规则化XAI方法,用于时间序列分类器的解释 | 该方法通过生成决策树图和特定规则集,揭示了深度学习时间序列分类器推断背后的关键时间步,增强了模型的可解释性 | NA | 提高复杂时间序列分类模型的全局可解释性 | 时间序列分类器及其解释方法 | 机器学习 | NA | 决策树分类器 | 深度学习模型 | 时间序列数据 | 使用了来自UCR档案的多样化真实世界数据集进行实验 |
6189 | 2024-10-09 |
MLGCN: an ultra efficient graph convolutional neural model for 3D point cloud analysis
2024, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2024.1439340
PMID:39372661
|
研究论文 | 本文提出了一种超高效的图卷积神经网络模型MLGCN,用于3D点云分析 | MLGCN模型利用浅层图神经网络块在不同空间局部性级别提取特征,并通过预计算的KNN图共享GCN块,显著减少了计算开销和内存使用 | NA | 开发一种高效且适用于低内存和低CPU设备的3D点云分析模型 | 3D点云数据的对象分类和部分分割任务 | 计算机视觉 | NA | 图卷积神经网络(GCN) | 多级图卷积神经网络(MLGCN) | 3D点云数据 | NA |
6190 | 2024-10-09 |
Multicenter Integration of MR Radiomics, Deep Learning, and Clinical Indicators for Predicting Hepatocellular Carcinoma Recurrence After Thermal Ablation
2024, Journal of hepatocellular carcinoma
IF:4.2Q2
DOI:10.2147/JHC.S482760
PMID:39372710
|
研究论文 | 开发并验证了一种创新的预测模型,该模型整合了多序列磁共振(MR)放射组学、深度学习特征和临床指标,以准确预测肝细胞癌(HCC)在热消融后的复发情况 | 首次将多序列MR放射组学、深度学习特征和临床指标整合到一个预测模型中,以提高肝细胞癌复发预测的准确性 | 研究为回顾性多中心队列研究,样本量相对较小,且仅限于接受热消融治疗的肝细胞癌患者 | 开发和验证一种能够准确预测肝细胞癌在热消融后复发的综合模型 | 接受热消融治疗的肝细胞癌患者 | 计算机视觉 | 肝癌 | 磁共振成像(MRI) | 3D卷积神经网络(3D CNN) | 图像 | 535名患者,包括462名男性和43名女性 |
6191 | 2024-10-09 |
Brain tumor grade classification using the ConvNext architecture
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241284920
PMID:39372816
|
研究论文 | 本研究提出了一种使用ConvNext架构对脑肿瘤进行分级分类的方法 | 本研究采用了现代卷积神经网络ConvNext,并结合迁移学习技术,实现了对脑肿瘤的高精度分类 | NA | 开发一种非侵入性且准确的方法来对脑肿瘤进行分级诊断 | 脑肿瘤的分级分类 | 计算机视觉 | 脑肿瘤 | 卷积神经网络 | ConvNext | 图像 | 使用了BraTS 2019数据集,输入了三种MRI序列作为预训练CNN的三个通道 |
6192 | 2024-10-09 |
Classification of underlying paroxysmal supraventricular tachycardia types using deep learning of sinus rhythm electrocardiograms
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241281200
PMID:39372813
|
研究论文 | 本研究利用深度学习模型对窦性心律心电图进行分类,以区分房室结折返性心动过速和隐匿性房室折返性心动过速 | 本研究首次使用深度学习模型对窦性心律心电图进行分类,以区分不同类型的阵发性室上性心动过速 | 研究样本量有限,且深度学习模型在区分两种心律失常类型时的表现仍有提升空间 | 探索利用窦性心律心电图通过深度学习进行房室结折返性心动过速和隐匿性房室折返性心动过速的分类 | 房室结折返性心动过速和隐匿性房室折返性心动过速患者 | 机器学习 | 心血管疾病 | 深度学习 | ResNet-34 | 心电图 | 1179名患者,其中833名患有房室结折返性心动过速,346名患有隐匿性房室折返性心动过速 |
6193 | 2024-10-09 |
Deep Learning-Based Detection of Impacted Teeth on Panoramic Radiographs
2024, Biomedical engineering and computational biology
IF:2.3Q3
DOI:10.1177/11795972241288319
PMID:39372969
|
研究论文 | 本文通过改进预训练的MedSAM模型,实现了全景X光片中阻生牙的检测 | 本文对SAM模型进行了改进,通过聚焦牙齿中心来提高阻生牙检测的准确性 | 模型的准确性和选择仍有待进一步提高 | 通过改进模型提高阻生牙在X光片中的检测准确性,辅助牙科诊断 | 阻生牙的检测 | 计算机视觉 | NA | 深度学习 | MedSAM | 图像 | 1016张X光片,分为训练集、验证集和测试集,比例为16:3:1 |
6194 | 2024-10-08 |
Enhancing practicality of deep learning for crop disease identification under field conditions: insights from model evaluation and crop-specific approaches
2024-Nov, Pest management science
IF:3.8Q1
DOI:10.1002/ps.8317
PMID:39030887
|
研究论文 | 研究评估了在实验室、田间和混合条件下使用深度学习模型进行作物病害识别的准确性,并探讨了模型架构和作物特异性模型对准确性的影响 | 研究了不同条件下(实验室、田间和混合)的作物病害识别准确性,并探讨了作物特异性模型对减少跨作物病害误分类的影响 | 尽管作物特异性模型减少了跨作物病害误分类,但也导致了同种作物内病害误分类的轻微增加 | 评估在不同条件下使用深度学习模型进行作物病害识别的准确性,并探讨模型架构和作物特异性模型的影响 | 苹果、马铃薯和番茄的14种病害 | 计算机视觉 | NA | 卷积神经网络 (CNN) | DenseNets, ResNets, MobileNetV3, EfficientNet, VGG Nets | 图像 | 包含苹果、马铃薯和番茄的14种病害的数据集 |
6195 | 2024-10-08 |
Causality-inspired crop pest recognition based on Decoupled Feature Learning
2024-Nov, Pest management science
IF:3.8Q1
DOI:10.1002/ps.8314
PMID:39022822
|
研究论文 | 本文提出了一种基于解耦特征学习的因果关系启发式作物害虫识别框架 | 利用因果推断技术处理训练数据集偏差,通过分类置信度构建不同的训练域,并使用中心三重损失学习类核心特征 | NA | 提高作物害虫识别的准确性和可靠性 | 作物害虫 | 计算机视觉 | NA | 深度学习 | 解耦特征学习框架 | 图像 | 在Li、DFSPD和IP102数据集上分别进行了测试 |
6196 | 2024-10-08 |
Prediction of surgery-first approach orthognathic surgery using deep learning models
2024-Nov, International journal of oral and maxillofacial surgery
IF:2.2Q2
DOI:10.1016/j.ijom.2024.05.003
PMID:38821731
|
研究论文 | 本研究利用深度学习模型预测正颌手术中手术优先方法的治疗方式,并评估其临床准确性 | 深度学习为加速工作流程、自动化辅助决策和个性化治疗计划提供了新方法 | NA | 利用深度学习预测正颌手术中手术优先方法的治疗方式 | 正颌手术患者 | 计算机视觉 | NA | 深度学习 | 卷积神经网络 (CNN) | 图像 | 228名骨性III类错颌患者 |
6197 | 2024-10-08 |
Deep Variational Network Toward Blind Image Restoration
2024-Nov, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3365745
PMID:38349822
|
研究论文 | 本文提出了一种新的盲图像恢复方法,结合了经典模型方法和深度学习方法的优点 | 构建了一个通用的贝叶斯生成模型来描述盲图像恢复中的退化过程,并设计了一种变分推断算法,将所有期望的后验分布参数化为深度神经网络 | NA | 旨在解决盲图像恢复问题,并结合经典模型方法和深度学习方法的优点 | 盲图像恢复中的图像退化和恢复过程 | 计算机视觉 | NA | 变分推断算法 | 深度神经网络 | 图像 | NA |
6198 | 2024-10-08 |
Joint segmentation of tumors in 3D PET-CT images with a network fusing multi-view and multi-modal information
2024-Oct-07, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad7f1b
PMID:39317235
|
研究论文 | 本文提出了一种用于3D PET-CT图像中肿瘤联合分割的深度学习算法 | 提出了多视图信息增强和多模态特征融合网络(MIEMFF-Net),结合动态多模态融合策略和多视图信息增强策略,有效利用PET和CT图像的代谢和解剖信息 | 未提及 | 解决现有方法在PET-CT图像肿瘤分割中忽略多模态和多视图信息的问题 | 3D PET-CT图像中的肿瘤 | 计算机视觉 | 软组织肉瘤 | 深度学习 | MIEMFF-Net | 图像 | Soft Tissue Sarcomas数据集和AutoPET数据集 |
6199 | 2024-10-08 |
An adaptive weight ensemble approach to forecast influenza activity in an irregular seasonality context
2024-Oct-04, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-52504-1
PMID:39366942
|
研究论文 | 本文开发了一种自适应权重集成方法,用于预测香港等热带和亚热带地区的不规则季节性流感活动 | 提出了自适应权重混合集成模型(AWBE),动态更新模型贡献,显著提高了预测准确性 | NA | 开发和比较不同模型在预测流感活动中的表现,特别是在不规则季节性的地区 | 香港地区的流感活动 | 机器学习 | 流感 | NA | 集成模型 | 时间序列数据 | 32次流行病,时间跨度为1998年至2019年 |
6200 | 2024-10-08 |
Meta-learning for real-world class incremental learning: a transformer-based approach
2024-Oct-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-71125-8
PMID:39367098
|
研究论文 | 本文提出了一种基于Transformer的元学习方法,用于解决现实世界中的类增量学习问题 | 本文的创新点在于将元学习应用于类增量学习,并提出了一种基于Transformer的聚合函数,能够在不重新训练的情况下完成任务 | NA | 本文的研究目的是将元学习应用于更贴近现实世界的类增量学习问题 | 本文的研究对象是类增量学习问题 | 自然语言处理 | NA | 元学习 | Transformer | 文本 | NA |