深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 12124 篇文献,本页显示第 6961 - 6980 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
6961 2024-09-11
Deep learning-based state of charge estimation for electric vehicle batteries: Overcoming technological bottlenecks
2024-Aug-30, Heliyon IF:3.4Q1
研究论文 本文提出了一种基于深度学习的电动汽车电池荷电状态(SOC)估算方法,旨在解决电池管理中的关键挑战并提高电动汽车效率 该研究的创新点在于整合了来自宝马i3电动汽车的真实驾驶数据,使模型能够捕捉影响SOC的复杂动态因素,并显著提高估算精度 NA 提高电动汽车电池荷电状态估算的准确性,促进能源节约和碳减排 电动汽车电池的荷电状态 机器学习 NA 深度学习 深度学习网络 多维数据(包括环境因素、车辆参数和电池属性) 72次实际驾驶测试,包含25种环境变量
6962 2024-09-11
Diagnostic Accuracy of an Integrated AI Tool to Estimate Gestational Age From Blind Ultrasound Sweeps
2024-08-27, JAMA
研究论文 本研究开发了一种集成AI工具,用于从盲超声扫描中估计孕龄,并评估其在低资源环境中由无经验用户使用的准确性 开发了一种低成本、便携式的AI工具,能够由无经验用户在没有超声训练的情况下准确估计孕龄 研究仅限于14至27周的孕龄评估,且样本主要来自赞比亚和北卡罗来纳州 评估AI工具在估计孕龄方面的准确性,特别是在低资源环境中 400名在赞比亚和北卡罗来纳州的早期妊娠妇女 机器学习 NA 深度学习 AI模型 图像 400名早期妊娠妇女
6963 2024-09-11
Expert-Level Detection of Referable Glaucoma from Fundus Photographs in a Safety Net Population: The AI and Teleophthalmology in Los Angeles Initiative
2024-Aug-26, medRxiv : the preprint server for health sciences
研究论文 开发并测试了一种基于深度学习算法,用于检测洛杉矶县卫生服务部门远程视网膜筛查计划中的可转诊青光眼 该算法在检测可转诊青光眼方面的表现与眼科医生和验光师相当或超过,且不受经验水平影响 NA 开发和测试一种深度学习算法,用于检测可转诊青光眼 青光眼检测 计算机视觉 眼科疾病 深度学习 VGG-19 图像 12,098张图像,来自5,616名患者(2,086名可转诊青光眼,3,530名非青光眼)
6964 2024-09-11
Automated Interpretation of Lung Sounds by Deep Learning in Children With Asthma: Scoping Review and Strengths, Weaknesses, Opportunities, and Threats Analysis
2024-Aug-23, Journal of medical Internet research IF:5.8Q1
综述 本文对人工智能辅助儿童哮喘肺音分析的文献进行了范围综述,并进行了优势、劣势、机会和威胁分析 本文创新性地结合了范围综述和SWOT分析,全面评估了人工智能在儿童哮喘肺音分析中的应用 纳入的研究质量普遍较低,缺乏外部验证,且数据收集和解释缺乏标准化 客观回顾人工智能辅助儿童哮喘肺音分析的文献,并提供其优势、劣势、机会和威胁的平衡评估 儿童哮喘患者的肺音分析 机器学习 哮喘 人工智能 NA 音频 学术文献搜索中纳入7项研究,灰色文献搜索中纳入11项研究
6965 2024-09-11
Anatomically constrained tractography of the fetal brain
2024-Aug-15, NeuroImage IF:4.7Q1
研究论文 本文提出了一种基于深度学习的解剖学约束胎儿脑部纤维束追踪方法 通过在dMRI空间中直接进行胎儿脑组织准确分割,显著提高了纤维束追踪的准确性,并能重建高度弯曲的纤维束如视辐射 NA 改进胎儿脑部扩散加权磁共振成像中的纤维束追踪技术 胎儿脑部白质纤维束 计算机视觉 NA 扩散加权磁共振成像(dMRI) 深度学习方法 图像 独立测试数据
6966 2024-09-11
MRGM: An enhanced catalog of mouse gut microbial genomes substantially broadening taxonomic and functional landscapes
2024-Aug-12, bioRxiv : the preprint server for biology
研究论文 本文介绍了MRGM,一个包含42,245个非冗余小鼠肠道细菌基因组的全面目录,显著扩展了小鼠肠道微生物的分类和功能范围 MRGM通过改进的基因组质量评估技术,捕获了先前未被充分代表的分类群,并将小鼠肠道微生物蛋白的基因本体注释率从3.2%提高到60% NA 增强小鼠肠道微生物组研究的转化价值,提供详细和高品质的小鼠肠道微生物基因组目录 小鼠肠道微生物基因组 NA NA 深度学习 NA 基因组 42,245个非冗余小鼠肠道细菌基因组,涵盖1,524个物种
6967 2024-09-11
A Deep Learning Approach to Predict Recanalization First-Pass Effect following Mechanical Thrombectomy in Patients with Acute Ischemic Stroke
2024-Aug-09, AJNR. American journal of neuroradiology
研究论文 研究利用深度学习方法预测急性缺血性中风患者在接受机械血栓切除术后首次通过效应的再通效果 首次提出完全自动化的深度学习方法,无需手动分割即可从术前CT和MR影像中预测首次通过效应 NA 开发一种完全自动化的深度学习方法,用于预测急性缺血性中风患者在接受机械血栓切除术后首次通过效应的再通效果 急性缺血性中风患者在接受机械血栓切除术后的首次通过效应 机器学习 中风 深度学习 混合变压器模型 影像 326名接受机械血栓切除术的患者
6968 2024-09-11
CT Reconstruction using Nonlinear Diffusion Posterior Sampling with Detector Blur Modeling
2024-Aug, Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography
PMID:39247222
研究论文 本文提出了一种结合深度学习和探测器模糊物理建模的CT重建方法,以提高空间分辨率 利用扩散模型作为深度图像先验,结合似然性前向模型进行测量,提出了一种非线性扩散后验采样方法 仅在模拟数据上进行了验证,尚未在实际临床数据上进行测试 提高CT重建中的空间分辨率 CT图像重建 计算机视觉 NA 深度学习 扩散模型 图像 模拟数据
6969 2024-09-11
AI-NERD: Elucidation of relaxation dynamics beyond equilibrium through AI-informed X-ray photon correlation spectroscopy
2024-Jul-15, Nature communications IF:14.7Q1
研究论文 本文开发了一种无监督深度学习框架,用于从实验数据中自动分类弛豫动力学,无需任何先验物理知识 提出了一个无监督深度学习框架,用于自动分类弛豫动力学,并展示了其在大数据集探索中的应用 NA 理解和解释功能材料在原位环境中的动力学行为 功能材料的弛豫动力学 物理学 NA X射线光子相关光谱(XPCS) 深度学习(DL) 实验数据 NA
6970 2024-09-11
Utilizing adaptive deformable convolution and position embedding for colon polyp segmentation with a visual transformer
2024-03-27, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于视觉变换器的结肠息肉分割模型,结合了自适应可变形卷积和位置嵌入 本文提出的Polyp-Vision Transformer (Polyp-ViT)模型在传统Transformer架构基础上,增强了特征提取和位置嵌入的自适应机制 NA 开发一种自动化的结肠息肉检测系统,以辅助早期诊断结直肠癌 结肠息肉 计算机视觉 结直肠癌 视觉变换器 (ViT) Transformer 图像 在Kvasir-seg和CVC-Clinic DB数据集上进行了测试,分别包含NA和NA个样本
6971 2024-09-11
Adaptive 3DCNN-based Interpretable Ensemble Model for Early Diagnosis of Alzheimer's Disease
2024-Feb, IEEE transactions on computational social systems IF:4.5Q1
研究论文 提出了一种基于三维卷积神经网络(3DCNN)和遗传算法(GA)的自适应可解释集成模型,用于阿尔茨海默病(AD)和轻度认知障碍(MCI)的早期诊断 该模型通过数据驱动的方式识别对分类有显著贡献的大脑区域,并使用基于梯度的归因方法在体素水平上定位这些区域 需要进一步研究该方法的泛化能力,并探索其在其他脑部疾病(如重度抑郁症、精神分裂症、自闭症和脑血管疾病)中的应用 开发一种用于阿尔茨海默病早期诊断的自适应可解释集成模型 阿尔茨海默病(AD)和轻度认知障碍(MCI)患者的大脑成像数据 计算机视觉 阿尔茨海默病 三维卷积神经网络(3DCNN)和遗传算法(GA) 3DCNN+EL+GA 图像 使用了来自阿尔茨海默病神经影像学倡议(ADNI)和开放获取影像学研究系列(OASIS)的数据集
6972 2024-09-11
Respiratory signal estimation for cardiac perfusion SPECT using deep learning
2024-Feb, Medical physics IF:3.2Q1
研究论文 本文开发了一种深度学习方法,利用SPECT投影数据估计呼吸信号,以减少心脏灌注SPECT图像中的呼吸运动伪影 提出了一种仅使用SPECT投影数据进行呼吸信号估计的深度学习方法,无需外部追踪设备 NA 开发一种深度学习方法,用于从SPECT投影数据中估计呼吸信号,以减少心脏灌注SPECT图像中的呼吸运动伪影 心脏灌注SPECT图像中的呼吸运动伪影 计算机视觉 心血管疾病 深度学习 U-Net 图像 900名受试者的心脏灌注SPECT研究,其中302名用于测试,598名用于训练和验证
6973 2024-09-11
MRGM: an enhanced catalog of mouse gut microbial genomes substantially broadening taxonomic and functional landscapes
2024 Jan-Dec, Gut microbes IF:12.2Q1
研究论文 本文介绍了一种增强版的鼠肠道微生物基因组目录MRGM,显著扩展了分类和功能范围 MRGM包含了42,245个非冗余的鼠肠道细菌基因组,覆盖1,524个物种,通过改进的基因组质量评估技术,捕捉到先前未被充分代表的谱系,并使用深度学习将基因本体注释率提高了18倍 NA 增强鼠肠道微生物组研究的转化价值,提供详细的鼠肠道微生物基因组目录 鼠肠道微生物组 NA NA 深度学习 NA 基因组 42,245个非冗余的鼠肠道细菌基因组,覆盖1,524个物种
6974 2024-09-11
Deep learning model shows pathologist-level detection of sentinel node metastasis of melanoma and intra-nodal nevi on whole slide images
2024, Frontiers in medicine IF:3.1Q1
研究论文 本文研究了深度学习模型在检测黑色素瘤前哨淋巴结转移和结内痣方面的能力 深度学习模型在检测黑色素瘤前哨淋巴结转移方面达到了病理学家水平,并能区分结内痣和转移 需要进一步验证 评估人工智能在检测黑色素瘤前哨淋巴结转移和结内痣方面的能力 黑色素瘤前哨淋巴结转移和结内痣 数字病理学 黑色素瘤 深度学习 深度学习模型 图像 485张全切片图像,包括196个前哨淋巴结活检样本
6975 2024-09-11
A Deep Learning Based Intelligent Decision Support System for Automatic Detection of Brain Tumor
2024, Biomedical engineering and computational biology IF:2.3Q3
研究论文 本文提出了一种基于深度学习的智能决策支持系统,用于自动检测脑肿瘤 本文采用了从零开始构建的卷积神经网络(CNN)和迁移学习模型(VGG-16、VGG-19、LeNet-5),并通过数据增强和超参数调优来提高检测精度 NA 开发一种能够自动检测脑肿瘤的智能决策支持系统,以辅助医疗从业者进行诊断 脑肿瘤的自动检测 计算机视觉 脑肿瘤 卷积神经网络(CNN) 卷积神经网络(CNN) 图像 大量脑部图像数据
6976 2024-09-11
RT-DETR-SoilCuc: detection method for cucumber germinationinsoil based environment
2024, Frontiers in plant science IF:4.1Q1
研究论文 本文提出了一种基于RT-DETR的黄瓜发芽检测方法,适用于土壤环境 设计了一种轻量级的实时黄瓜发芽检测模型,通过引入在线图像增强、Adown下采样操作符、广义高效轻量网络、在线卷积重参数化机制和归一化高斯Wasserstein距离损失函数,提高了模型的训练效果和轻量化程度 NA 解决现有深度学习种子发芽检测技术在复杂土壤环境中识别准确率下降的问题 黄瓜发芽过程 计算机视觉 NA Real-Time DEtection TRansformer (RT-DETR) RT-DETR-SoilCuc 图像 不同盐浓度压力下的黄瓜发芽实验
6977 2024-09-11
Modeling of SPM-GRU ping-pong ball trajectory prediction incorporating YOLOv4-Tiny algorithm
2024, PloS one IF:2.9Q1
研究论文 研究通过先进的计算机视觉和深度学习技术提高乒乓球轨迹预测的准确性,实现实时准确的乒乓球位置和运动轨迹跟踪 结合物理模型和深度学习方法,创新性地应用微型第四代实时目标检测算法与门控循环单元于乒乓球运动分析 NA 提高乒乓球轨迹预测的准确性 乒乓球的运动轨迹 计算机视觉 NA YOLOv4-Tiny算法 门控循环单元(GRU) 图像 NA
6978 2024-09-11
Evaluation of influencing factors of China university teaching quality based on fuzzy logic and deep learning technology
2024, PloS one IF:2.9Q1
研究论文 本文基于模糊逻辑和深度学习技术,评估了中国大学教学质量的影响因素 本文提出了一种结合模糊逻辑和深度学习的评估模型,使用顺序直觉模糊(SIF)辅助长短期记忆(LSTM)模型来精确测量教学质量 NA 评估和提升大学教学质量 大学教学质量的影响因素 机器学习 NA 模糊逻辑,深度学习 LSTM 问卷调查数据 60多名教师和学生的开放式问卷调查
6979 2024-09-11
Classification of Alzheimer disease using DenseNet-201 based on deep transfer learning technique
2024, PloS one IF:2.9Q1
研究论文 本文使用基于DenseNet-201的深度迁移学习技术对阿尔茨海默病进行分类 提出了基于DenseNet-201的迁移学习方法,显著提高了阿尔茨海默病分类的准确率 NA 开发一种高准确率的阿尔茨海默病分类方法 阿尔茨海默病的不同阶段(非痴呆、中度痴呆、轻度痴呆、非常轻度痴呆和重度痴呆) 计算机视觉 阿尔茨海默病 深度迁移学习 DenseNet-201 MRI图像 包含阿尔茨海默病MRI扫描数据的五类数据集
6980 2024-09-11
Multifunctional aggregation network of cell nuclei segmentation aiming histopathological diagnosis assistance: A new MA-Net construction
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种基于U-Net的深度学习模型MA-Net,用于从H&E染色图像中准确分割细胞核,以辅助组织病理学诊断 本文创新性地应用了特征融合模块、注意力门单元和空洞空间金字塔池化到U-Net的编码器、解码器、跳跃连接和瓶颈部分,以提升网络在细胞核分割任务中的性能 NA 提升组织病理学图像中细胞核分割的准确性,以辅助自动化诊断系统 H&E染色图像中的细胞核 计算机视觉 NA 深度学习 U-Net 图像 多个公共数据集
回到顶部