深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 12059 篇文献,本页显示第 721 - 740 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
721 2025-05-02
Impacts of Adaptive Statistical Iterative Reconstruction-V and Deep Learning Image Reconstruction Algorithms on Robustness of CT Radiomics Features: Opportunity for Minimizing Radiomics Variability Among Scans of Different Dose Levels
2024-02, Journal of imaging informatics in medicine
research paper 研究自适应统计迭代重建-V(ASIR-V)和深度学习图像重建(DLIR)算法对CT放射组学特征鲁棒性的影响 首次评估了ASIR-V和DLIR算法在不同剂量水平下对CT放射组学特征重现性的影响,并发现高强度DLIR算法可减少剂量降低带来的放射组学变异性 研究使用的是标准化体模,未涉及真实患者数据,可能影响结果的临床适用性 评估不同图像重建算法对CT放射组学特征稳定性的影响 标准化体模在不同剂量水平和重建算法下的CT图像 digital pathology NA 单能CT(SECT)、双能CT(DECT)、滤波反投影(FBP)、ASIR-V、DLIR DLIR CT图像 标准化体模在标准剂量(20 mGy)和低剂量(10 mGy)水平下的扫描数据
722 2025-05-02
The Segmentation of Multiple Types of Uterine Lesions in Magnetic Resonance Images Using a Sequential Deep Learning Method with Image-Level Annotations
2024-02, Journal of imaging informatics in medicine
research paper 本研究开发了一种仅使用图像级标签的弱监督模型,用于在磁共振图像上自动分割四种类型的子宫病变和三种类型的正常组织 提出了一种两阶段模型,包含像素相关模块、类重激活图模块、像素间关系网络模块和Deeplab v3+模块,仅需图像级标注即可实现分割 研究仅使用了单一机构的回顾性数据,可能影响模型的泛化能力 开发弱监督医学图像分割方法以减少对像素级标注的依赖 四种子宫病变(子宫内膜癌、子宫肌瘤、子宫内膜息肉和非典型子宫内膜增生)和三种正常组织 digital pathology uterine lesions MRI T2-weighted序列成像 sequential deep learning model (Deeplab v3+) medical images 85,730张图像来自316名患者(训练196人,验证57人,测试63人)
723 2025-05-02
Functional Near-Infrared Spectroscopy-Based Computer-Aided Diagnosis of Major Depressive Disorder Using Convolutional Neural Network with a New Channel Embedding Layer Considering Inter-Hemispheric Asymmetry in Prefrontal Hemodynamic Responses
2024, Depression and anxiety IF:4.7Q1
research paper 该研究提出了一种基于卷积神经网络(CNN)的新型深度学习框架,用于利用功能性近红外光谱(fNIRS)进行重度抑郁症(MDD)的计算机辅助诊断(CAD) 提出了一种新的CNN模型架构,包含三个1D深度卷积层,专门设计用于反映MDD患者和健康对照组(HCs)之间血流动力学反应的半球间不对称性 样本量相对较小(48名MDD患者和68名HCs),且仅基于Stroop任务的数据 开发一种高精度的fNIRS-based CAD系统,用于MDD的诊断 MDD患者和健康对照组 digital pathology major depressive disorder fNIRS CNN hemodynamic responses 48名MDD患者和68名HCs
724 2025-04-18
Using interactive deep learning to track cells: A report on a 3-day hands-on training program at IUPAB 2024
2024, Biophysics and physicobiology IF:1.6Q4
NA NA NA NA NA NA NA NA NA NA NA NA
725 2025-05-02
Advanced computational tools, artificial intelligence and machine-learning approaches in gut microbiota and biomarker identification
2024, Frontiers in medical technology IF:2.7Q3
综述 本文综述了先进计算工具、人工智能和机器学习方法在肠道微生物群和生物标志物识别中的应用 整合多组学数据和先进AI技术,探索微生物组与宿主健康的复杂关系,推动个性化治疗策略的发展 未提及具体技术实施细节或临床验证结果 探索计算工具和AI在肠道微生物组研究中的应用,以识别疾病诊断和治疗的生物标志物 肠道微生物群及其与宿主健康的相互作用 机器学习 NA 多组学数据整合(宏基因组学、宏蛋白质组学、代谢组学) 深度学习、基于网络的方法 多组学数据 NA
726 2025-05-01
Diagnostic Performance of Deep Learning Applications in Hepatocellular Carcinoma Detection Using Computed Tomography Imaging
2024-Dec-30, The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology
research paper 本研究利用深度学习技术中的YOLO架构,通过计算机断层扫描(CT)图像提高肝细胞癌(HCC)的检测能力,旨在改善早期诊断和患者预后 采用YOLO架构的深度学习模型在HCC检测中表现出卓越的诊断准确性,显著超越传统诊断方法 研究样本量相对较小,仅包含122名患者的1290张CT图像 提高肝细胞癌的早期检测能力,改善患者预后 肝细胞癌(HCC)患者的CT图像 computer vision liver cancer CT imaging YOLO image 1290张CT图像来自122名患者
727 2025-05-01
Transcription factor prediction using protein 3D secondary structures
2024-Dec-26, Bioinformatics (Oxford, England)
research paper 提出了一种基于深度学习的转录因子预测方法StrucTFactor,首次利用蛋白质的3D二级结构信息进行预测 首次利用蛋白质的3D二级结构信息进行转录因子预测,显著提高了预测准确性 可能受到数据偏差(如序列冗余)的影响 提高转录因子的预测准确性 蛋白质 machine learning NA deep learning StrucTFactor protein 3D secondary structures 约525,000个蛋白质,涵盖12个数据集
728 2025-05-01
BetaAlign: a deep learning approach for multiple sequence alignment
2024-Dec-26, Bioinformatics (Oxford, England)
研究论文 提出了一种基于深度学习的多序列比对方法BetaAlign,利用自然语言处理技术进行序列比对 首次将深度学习应用于多序列比对,利用NLP技术和transformer模型,显著区别于传统比对算法 训练数据规模、不同transformer架构以及子空间学习等因素可能影响准确性 改进多序列比对的计算方法,挑战传统生物信息学和系统基因组学中的经典算法 生物序列的多序列比对 生物信息学 NA 自然语言处理(NLP) transformer 生物序列数据 NA
729 2025-05-01
Forecasting Subway Passenger Flow for Station-Level Service Supply
2024-12, Big data IF:2.6Q2
research paper 提出了一种名为DeepSPF的深度学习架构,用于预测考虑不同功能类型车站的地铁客流 结合LSTM和一维卷积的滑动长短期记忆神经网络,能够识别不同类型车站的未来客流差异 实验仅在北京地铁进行,未在其他城市地铁系统验证 提高地铁站点级服务供应的客流预测准确性 地铁车站的乘客流量 machine learning NA deep learning LSTM, CNN time series data 北京地铁数据
730 2025-05-01
Structures of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features
2024-Nov-19, Journal of virology IF:4.0Q2
研究论文 通过深度学习增强的冷冻电子断层扫描技术,揭示了EBV和KSHV病毒粒子的结构特征 首次报道了完整的人类γ疱疹病毒粒子的结构,揭示了病毒粒子中衣壳外部的多形性特征以及病毒包膜和皮层结构的物种特异性差异 研究主要关注细胞外病毒粒子,可能无法完全反映细胞内病毒组装过程的动态特性 解析EBV和KSHV病毒粒子的三维结构特征 EB病毒(Epstein-Barr virus)和卡波西肉瘤相关疱疹病毒(Kaposi's sarcoma-associated herpesvirus) 结构生物学 肿瘤相关病毒感染 冷冻电子断层扫描(cryoET)结合深度学习 深度学习增强的图像处理 冷冻电子断层扫描图像 未明确说明样本数量,研究使用EBV和KSHV的细胞外病毒粒子
731 2025-05-01
Deep learning-based fishing ground prediction with multiple environmental factors
2024-Nov, Marine life science & technology IF:5.8Q1
research paper 本研究开发了一种基于深度学习的多环境因素渔场预测模型,以西北太平洋的飞鱿鱼为例 采用改进的U-Net模型结合多种环境因素(海面温度、高度、盐度和叶绿素)进行渔场预测,显著提高了渔场中心区域的集中度 研究仅针对西北太平洋的飞鱿鱼渔场,模型在其他海域或鱼种的适用性有待验证 提高海洋经济鱼种渔场预测的准确性 西北太平洋的飞鱿鱼渔场 machine learning NA 深度学习 改进的U-Net 环境参数数据(海面温度、高度、盐度、叶绿素) 2002-2019年7月至11月的数据用于训练,2020年数据用于测试
732 2025-05-01
An artificial intelligence grading system of apical periodontitis in cone-beam computed tomography data
2024-10-01, Dento maxillo facial radiology
research paper 开发了一种基于深度学习的根尖周炎分级系统,用于辅助初级医生诊断 提出了一种自创的PAINet算法,并在性能上优于经典算法和最新的Transformer模型 样本量较小,仅包含120张CBCT图像 开发并评估一种基于人工智能的根尖周炎分级系统 根尖周炎(AP)的CBCT图像 digital pathology apical periodontitis deep learning ResNet50/101/152, PAINet, Transformer-based models, attention models image 120张CBCT图像
733 2025-05-01
Automatic classification and segmentation of multiclass jaw lesions in cone-beam CT using deep learning
2024-10-01, Dento maxillo facial radiology
研究论文 开发并验证了一种基于nnU-Net改进的深度学习模型,用于在锥束CT中对五类颌骨病变进行分类和分割 提出了一种改进的nnU-Net模型,能够同时完成颌骨病变的分类和分割任务,并在性能上超越口腔颌面放射科医生和外科医生 未提及样本的多样性和模型的泛化能力 提高颌骨病变在锥束CT中的自动分类和分割准确率 颌骨病变 数字病理 颌骨病变 锥束CT (CBCT) nnU-Net 医学影像 368例CBCT扫描(37,168张切片)
734 2025-05-01
Hybrid Deep Learning Approach for Traffic Speed Prediction
2024-10, Big data IF:2.6Q2
研究论文 提出了一种名为HDL4TSP的混合深度学习方法,用于预测城市各区域的交通速度 同时建模交通数据的空间和时间相关性,通过图卷积网络和ConvLSTM网络分别捕捉空间和时间维度的依赖关系 未提及具体的数据集规模或模型在不同城市或交通条件下的泛化能力 提高交通速度预测的准确性,以支持交通管理和驾驶路线规划 城市各区域的交通速度数据 机器学习 NA 深度学习 图卷积网络(GCN)、ConvLSTM 交通速度数据 两个真实世界的数据集
735 2025-05-01
A Network Intrusion Detection System Using Hybrid Multilayer Deep Learning Model
2024-10, Big data IF:2.6Q2
research paper 提出了一种使用混合多层深度学习模型的网络入侵检测系统 结合多层卷积神经网络和softmax分类器,以及多层深度神经网络,提高了入侵检测的准确率 仅使用了NSL-KDD和KDDCUP'99两个数据集进行实验,可能在其他数据集上表现不同 提高网络入侵检测系统的准确率 网络流量数据 machine learning NA 深度学习 CNN, softmax classifier, deep neural network 网络流量数据 NSL-KDD和KDDCUP'99数据集
736 2025-05-01
Deep learning in the diagnosis of maxillary sinus diseases: a systematic review
2024-09-01, Dento maxillo facial radiology
系统综述 评估深度学习在上颌窦疾病检测、分类和分割中的性能 系统综述了深度学习在上颌窦疾病诊断中的应用,涵盖了多种任务类型和模型组合 仅纳入了截至2024年2月7日发表的英文论文,可能存在发表偏倚 评估深度学习在上颌窦疾病诊断中的性能 上颌窦疾病 数字病理 上颌窦疾病 深度学习 DL 放射影像 14项研究(从1167项研究中筛选)
737 2025-05-01
Detection and classification of mandibular fractures in panoramic radiography using artificial intelligence
2024-09-01, Dento maxillo facial radiology
研究论文 本研究评估了YOLOv5深度学习模型在全景X光片中检测不同类型下颌骨骨折的性能 使用YOLOv5模型对六种下颌骨骨折类型进行检测和分类,特别是在体和联合区域表现出色 在检测髁突头和髁突颈骨折时表现较差,精度和灵敏度较低 评估人工智能在全景X光片中检测和分类下颌骨骨折的潜力 下颌骨骨折的全景X光片 计算机视觉 下颌骨骨折 深度学习 YOLOv5 图像 498张全景X光片,包含673处骨折
738 2025-05-01
Accurate, automated classification of radiographic knee osteoarthritis severity using a novel method of deep learning: Plug-in modules
2024-Aug-13, Knee surgery & related research IF:4.1Q1
研究论文 开发了一种基于深度学习的自动膝关节骨关节炎严重程度分类模型 使用插件模块(PIM)提升细粒度分类任务的性能,优于之前的深度学习模型 未来仍需改进,模型在KL等级1的分类准确率较低(43%) 开发自动膝关节骨关节炎严重程度分类模型 膝关节骨关节炎的X光片 计算机视觉 骨关节炎 深度学习 CNN或transformer-based网络与PIM模块集成 图像 训练集:Osteoarthritis Initiative数据集;测试集:17,040例(Multicenter Osteoarthritis Study)
739 2025-05-01
Automated cooling tower detection through deep learning for Legionnaires' disease outbreak investigations: a model development and validation study
2024-Jul, The Lancet. Digital health
研究论文 本研究开发并验证了一种基于深度学习的计算机视觉模型,用于自动检测航空图像中的冷却塔,以加速军团病爆发的调查 使用YOLOv5和EfficientNet-b5两阶段模型自动检测冷却塔,显著提高了检测速度和准确性 模型在未训练过的城市(如波士顿和雅典)的表现略有下降,PPV和敏感度有所降低 开发一种自动检测冷却塔的深度学习模型,以加速军团病爆发的调查和源头控制 航空图像中的冷却塔 计算机视觉 军团病 深度学习 YOLOv5, EfficientNet-b5 卫星图像 2051张包含7292个冷却塔的图像,测试数据集包含548张图像
740 2025-05-01
DMAF-Net: deformable multi-scale adaptive fusion network for dental structure detection with panoramic radiographs
2024-06-28, Dento maxillo facial radiology
研究论文 提出了一种名为DMAF-Net的可变形多尺度自适应融合网络,用于全景X光片中的牙齿结构检测 改进了YOLO网络,通过不同模块增强特征提取能力,并利用自适应空间特征融合解决不同特征层尺度不匹配的问题 NA 提高全景X光片中牙齿结构问题检测的准确性 牙齿结构问题(阻生牙、缺失牙、种植体、冠修复体和根管治疗牙) 计算机视觉 牙科疾病 深度学习 DMAF-Net(基于YOLO改进) 图像(全景X光片) 1474张全景X光片
回到顶部