本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7461 | 2024-09-15 |
Unlocking the power of AI models: exploring protein folding prediction through comparative analysis
2024-Jun-01, Journal of integrative bioinformatics
IF:1.5Q3
DOI:10.1515/jib-2023-0041
PMID:38797876
|
研究论文 | 本文通过比较分析探讨了深度学习模型在蛋白质折叠预测中的应用 | 本文强调了评估深度学习模型多样性输出的重要性,并进行了跨物种和蛋白质的比较分析 | 本文主要集中在特定蛋白质(ARM58和ARM56)的分析,未涵盖所有蛋白质结构预测的复杂性 | 评估深度学习模型在蛋白质折叠预测中的准确性,并提供对这些预测复杂性的见解 | ARM58和ARM56蛋白质及其在不同物种中的同源物 | 机器学习 | NA | 深度学习 | 深度学习模型 | 蛋白质序列 | 涉及两个蛋白质(ARM58和ARM56)及其同源物 |
7462 | 2024-09-15 |
Binding Activity Classification of Anti-SARS-CoV-2 Molecules using Deep Learning Across Multiple Assays
2024-05-03, Balkan medical journal
IF:1.9Q2
|
研究论文 | 本文利用深度学习技术,特别是结合了合成少数类过采样技术(SMOTE)的深度神经网络(DNN),来提高抗SARS-CoV-2分子的结合活性分类 | 本文的创新点在于使用SMOTE技术处理数据集中的类别不平衡问题,并通过深度神经网络优化模型性能 | 本文的局限性在于不同生物测定数据集的不平衡比例对模型性能的影响,尤其是高不平衡比例的测定数据集 | 本文的研究目的是利用深度学习技术提高抗SARS-CoV-2分子在多种生物测定中的结合活性分类准确性 | 本文的研究对象是抗SARS-CoV-2分子的结合活性分类 | 机器学习 | COVID-19 | 深度学习 | 深度神经网络(DNN) | 生物测定数据 | 11个生物测定数据集,涵盖不同的SARS-CoV-2相互作用和抑制机制 |
7463 | 2024-09-15 |
Deep transfer learning with fuzzy ensemble approach for the early detection of breast cancer
2024-Apr-08, BMC medical imaging
IF:2.9Q2
DOI:10.1186/s12880-024-01267-8
PMID:38589813
|
研究论文 | 本文研究了使用深度学习和模糊集成方法进行乳腺癌早期检测 | 提出了基于改进的Gompertz函数的模糊排名方法,用于集成深度学习模型的决策分数,以提高分类准确性 | NA | 研究乳腺癌的早期检测 | 乳腺肿瘤的早期检测 | 计算机视觉 | 乳腺癌 | 深度学习 | CNN | 图像 | 使用了四个公共数据库,每个数据库包含986张乳腺X光片,分为三类(正常、良性、恶性) |
7464 | 2024-09-15 |
A convolutional neural network-based system for fully automatic segmentation of whole-body [68Ga]Ga-PSMA PET images in prostate cancer
2024-Apr, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-023-06555-z
PMID:38095671
|
研究论文 | 本文开发并评估了一种基于nnU-Net框架的全自动工具,用于在前列腺癌患者的全身[68Ga]Ga-PSMA PET扫描中检测和分割mPCa病变 | 提出了一个基于nnU-Net框架的全3D卷积神经网络(CNN),用于前列腺癌患者的全身[68Ga]Ga-PSMA PET图像的自动分割 | NA | 开发和评估一种全自动工具,用于在前列腺癌患者的全身[68Ga]Ga-PSMA PET扫描中检测和分割mPCa病变 | 前列腺癌患者的全身[68Ga]Ga-PSMA PET扫描图像 | 计算机视觉 | 前列腺癌 | 卷积神经网络(CNN) | nnU-Net | 图像 | 412名前列腺癌患者 |
7465 | 2024-09-15 |
Automated identification of uncertain cases in deep learning-based classification of dopamine transporter SPECT to improve clinical utility and acceptance
2024-Apr, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-023-06566-w
PMID:38133688
|
研究论文 | 本文设计并验证了一种基于卷积神经网络(CNN)的系统,用于识别多巴胺转运体SPECT图像分类中的不确定病例 | 提出了一个结合五个CNN的网络集成(NE)和一个不确定性检测模块(UDM),用于识别可能被错误分类的病例 | NA | 设计并验证一个CNN系统,用于识别多巴胺转运体SPECT图像分类中的不确定病例,以提高临床实用性和接受度 | 多巴胺转运体(DAT)-SPECT图像 | 计算机视觉 | NA | 卷积神经网络(CNN) | 卷积神经网络(CNN) | 图像 | 开发数据集包含1740个临床DAT-SPECT图像,其中1250个用于训练,490个用于测试;另外两个独立测试数据集分别包含640和645个图像 |
7466 | 2024-09-15 |
AFM-YOLOv8s: An Accurate, Fast, and Highly Robust Model for Detection of Sporangia of Plasmopara viticola with Various Morphological Variants
2024, Plant phenomics (Washington, D.C.)
DOI:10.34133/plantphenomics.0246
PMID:39263595
|
研究论文 | 本文开发了一种名为AFM-YOLOv8s的增强型YOLOv8s模型,用于检测葡萄霜霉病孢子囊 | 引入了自适应交叉融合模块、轻量级特征提取模块FasterCSP和新的损失函数MPDIoU,显著提高了检测精度和速度 | 尽管FasterCSP在模型复杂度和大小上有所减少,但可能会导致轻微的精度损失 | 开发一种高效、准确的深度学习模型,用于快速检测葡萄霜霉病孢子囊 | 葡萄霜霉病孢子囊及其多种形态变异 | 计算机视觉 | 葡萄霜霉病 | 深度学习 | YOLOv8s | 图像 | 自定义的葡萄霜霉病孢子囊数据集 |
7467 | 2024-09-15 |
Enhancing reginal wall abnormality detection accuracy: Integrating machine learning, optical flow algorithms, and temporal convolutional networks in multi-view echocardiography
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0310107
PMID:39264929
|
研究论文 | 本文提出了一种结合机器学习、光流算法和时间卷积网络的多视角超声心动图区域壁异常检测方法 | 本文创新性地利用多周期和多视角的超声心动图数据,结合U-Net分割、光流算法和时间卷积网络,提取丰富的运动场特征,以提高区域壁异常检测的准确性 | NA | 提高区域壁运动异常检测的准确性,为早期心肌梗死诊断提供更全面和精确的工具 | 区域壁运动异常(RWMA)和心肌梗死(MI) | 机器学习 | 心血管疾病 | 光流算法、时间卷积网络 | U-Net、SVM分类器 | 超声心动图 | HMC-QU数据集 |
7468 | 2024-09-15 |
Causal Inference Meets Deep Learning: A Comprehensive Survey
2024, Research (Washington, D.C.)
DOI:10.34133/research.0467
PMID:39257419
|
综述 | 本文全面回顾了因果推断在深度学习中的应用 | 通过将因果模型替代相关性模型,提高模型的解释性和稳定性 | 讨论了因果推断的当前局限性和未来研究方向 | 探讨因果推断与深度学习的结合及其应用 | 深度学习模型及其在大型任务和特定模态中的应用 | 机器学习 | NA | 因果推断 | 深度学习模型 | NA | NA |
7469 | 2024-09-15 |
Individuals carrying the HLA-B*15 allele exhibit favorable responses to COVID-19 vaccines but are more susceptible to Omicron BA.5.2 and XBB.1.16 infection
2024, Frontiers in immunology
IF:5.7Q1
DOI:10.3389/fimmu.2024.1440819
PMID:39257586
|
研究论文 | 研究携带HLA-B*15等位基因个体对COVID-19疫苗的反应及对Omicron变种感染的易感性 | 首次揭示携带HLA-B*15等位基因个体对COVID-19疫苗有良好反应,但对Omicron变种感染更易感 | 研究样本量有限,未涵盖所有可能的HLA等位基因类型 | 探讨HLA-B*15等位基因对COVID-19疫苗反应及Omicron变种感染的影响 | 携带HLA-B*15等位基因的个体 | NA | COVID-19 | ELISA、流式细胞术、人工智能深度学习技术 | 深度学习 | 血液样本 | 252名志愿者 |
7470 | 2024-09-15 |
AR-AI assisted ophthalmic nursing: Preliminary usability study in clinical settings
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241269470
PMID:39257872
|
研究论文 | 研究利用增强现实(AR)和人工智能(AI)技术开发眼科病房护士智能辅助系统,并评估其在临床工作中的可用性和可接受性 | 首次将AR和AI技术结合应用于眼科病房护理工作,开发了具有患者面部识别、自动信息匹配和护理工作管理功能的智能辅助系统 | 研究样本量较小,仅涉及眼科日间病房护士,未来需扩大样本量和研究范围 | 开发和评估基于AR和AI技术的眼科病房护士智能辅助系统的可用性和可接受性 | 眼科病房护士及其护理工作 | 机器学习 | NA | 增强现实(AR)、深度学习、声学识别、语音交互、图像识别 | NA | 文本、图像 | 眼科日间病房护士 |
7471 | 2024-09-15 |
Deep learning image analysis for filamentous fungi taxonomic classification: Dealing with small datasets with class imbalance and hierarchical grouping
2024, Biology methods & protocols
IF:2.5Q3
DOI:10.1093/biomethods/bpae063
PMID:39258158
|
研究论文 | 研究探讨了使用深度学习对数百种丝状真菌进行分类的潜力,并解决了小数据集、类别不平衡和层次分组等常见问题 | 首次尝试使用深度学习对丝状真菌进行分类,并提出了处理小数据集和类别不平衡的方法 | 模型性能较低,主要由于数据集较小、类别不平衡和真菌菌落形态可塑性高 | 探索深度学习在丝状真菌分类中的应用潜力 | 数百种丝状真菌的菌落图像 | 计算机视觉 | NA | 卷积神经网络 | CNN | 图像 | 606个真菌菌落图像 |
7472 | 2024-09-15 |
Unveiling the hidden: a deep learning approach to unraveling subzone-specific changes in peripapillary atrophy in type 2 diabetes
2024, Frontiers in cell and developmental biology
IF:4.6Q1
DOI:10.3389/fcell.2024.1459040
PMID:39258228
|
研究论文 | 本研究利用深度学习模型评估了2型糖尿病患者中视盘周围萎缩(PPA)亚区的光学相干断层扫描血管造影(OCTA)变化 | 采用多任务联合深度学习模型自动化确定和量化PPA的微结构及其相应的微循环 | 需要纵向研究进一步阐明gamma区在DR发展和进展中的作用 | 评估2型糖尿病患者中视盘周围萎缩亚区的OCTA变化 | 2型糖尿病患者中视盘周围萎缩的beta区和gamma区 | 计算机视觉 | 糖尿病 | 光学相干断层扫描血管造影(OCTA) | 多任务联合深度学习模型 | 图像 | 2820张图像用于模型训练和验证,44只非增殖性糖尿病视网膜病变(NPDR)眼和46只无DR眼用于横断面研究 |
7473 | 2024-09-15 |
DeepMonitoring: a deep learning-based monitoring system for assessing the quality of cornea images captured by smartphones
2024, Frontiers in cell and developmental biology
IF:4.6Q1
DOI:10.3389/fcell.2024.1447067
PMID:39258227
|
研究论文 | 本文构建了一个基于深度学习的图像质量监控系统,用于评估智能手机拍摄的角膜图像质量 | 提出了DeepMonitoring系统,能够识别低质量角膜图像并分析其成因,指导操作者及时获取高质量图像 | 未提及具体限制 | 开发一个能够评估智能手机拍摄角膜图像质量的系统,以促进AI诊断系统在临床中的应用 | 智能手机拍摄的角膜图像及其质量评估 | 计算机视觉 | 角膜疾病 | 深度学习 | NA | 图像 | 未提及具体样本数量 |
7474 | 2024-09-15 |
Weakly supervised large-scale pancreatic cancer detection using multi-instance learning
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1362850
PMID:39267824
|
研究论文 | 本文提出了一种两阶段弱监督深度学习模型,用于通过CT图像检测胰腺癌 | 本文创新性地采用了两阶段弱监督学习方法,结合了nnU-Net和多实例学习模型,显著提高了胰腺癌检测的准确性 | 本文的局限性在于依赖于特定的数据集(HFH和MSKCC),可能限制了模型的普适性 | 研究目的是提高胰腺癌早期检测的准确性 | 研究对象是胰腺癌的CT图像 | 计算机视觉 | 胰腺癌 | 深度学习 | 两阶段模型(nnU-Net和多实例学习) | 图像 | 463例病例和2,882例对照 |
7475 | 2024-09-15 |
Neighborhood attention transformer multiple instance learning for whole slide image classification
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1389396
PMID:39267847
|
研究论文 | 本文介绍了一种名为NATMIL的新方法,通过使用Neighborhood Attention Transformer来整合WSI切片之间的上下文依赖关系,从而提高肿瘤分类的准确性 | 本文创新性地引入了Neighborhood Attention Transformer,通过整合更广泛的组织上下文来增强多实例学习,从而提高肿瘤分类的准确性 | NA | 提高使用全切片图像进行肿瘤分类的准确性 | 非小细胞肺癌和淋巴结肿瘤的全切片图像 | 数字病理学 | 肺癌 | Neighborhood Attention Transformer | Transformer | 图像 | 在Camelyon数据集上为89.6%,在TCGA-LUSC数据集上为88.1% |
7476 | 2024-09-14 |
The research hotspots and theme trends of artificial intelligence in nurse education: A bibliometric analysis from 1994 to 2023
2024-10, Nurse education today
IF:3.6Q1
DOI:10.1016/j.nedt.2024.106321
PMID:39084073
|
综述 | 本文通过文献计量分析探讨了1994年至2023年间人工智能在护理教育中的研究热点和主题趋势 | 本文通过多种分析工具揭示了人工智能在护理教育中的研究热点和未来趋势 | 本文主要依赖文献计量分析,可能忽略了其他定性研究方法的贡献 | 探讨人工智能在护理教育中的研究热点和主题趋势 | 人工智能在护理教育中的应用 | 机器学习 | NA | 文献计量分析 | NA | 文本 | 135篇文章 |
7477 | 2024-09-14 |
Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data
2024-Oct, Breast (Edinburgh, Scotland)
DOI:10.1016/j.breast.2024.103786
PMID:39137488
|
研究论文 | 本研究利用放射组学和深度学习分析纵向DCE-MRI数据,预测乳腺癌患者在新辅助治疗后腋窝淋巴结切除豁免的可能性 | 本研究引入了一种基于支持向量机的“数据整合”模型,显著提高了腋窝淋巴结状态评估的准确性 | 本研究为回顾性分析,样本量有限,需要进一步的前瞻性研究验证 | 开发一种精确的方法来评估乳腺癌患者在新辅助治疗后腋窝淋巴结的状态 | 乳腺癌患者在新辅助治疗后的腋窝淋巴结状态 | 数字病理学 | 乳腺癌 | 动态对比增强MRI (DCE-MRI) | 支持向量机 (SVM) | 图像 | 160名乳腺癌患者 |
7478 | 2024-09-14 |
Artificial intelligence-assisted grading for tear trough deformity
2024-Oct, Journal of plastic, reconstructive & aesthetic surgery : JPRAS
DOI:10.1016/j.bjps.2024.07.048
PMID:39151284
|
研究论文 | 本文研究了利用智能手机摄影和人工智能深度学习技术辅助泪沟畸形分级的方法 | 首次展示了使用内置智能手机摄像头和AI深度学习程序对泪沟畸形进行分类的可行性 | 研究样本量相对较小,且仅使用了单一的智能手机摄像头 | 建立一个可靠且精确的数字图像分级模型,以辅助外科医生进行临床评估和手术决策 | 泪沟畸形 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 504名患者和983张照片 |
7479 | 2024-08-20 |
Correction to "Physics-Informed Deep Learning Approach for Reintroducing Atomic Detail in Coarse-Grained Configurations of Multiple Poly(lactic acid) Stereoisomers"
2024-Sep-09, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c01407
PMID:39158929
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
7480 | 2024-09-14 |
Enhancing early Parkinson's disease detection through multimodal deep learning and explainable AI: insights from the PPMI database
2024-09-09, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-70165-4
PMID:39251639
|
研究论文 | 研究通过多模态深度学习和可解释人工智能技术,利用PPMI数据库数据,提升帕金森病早期检测的准确性 | 引入了一种联合协同学习方法进行多模态融合,结合了不同的3D架构和新型激励网络(EN),并支持可解释人工智能(XAI)技术 | NA | 提升帕金森病早期检测的准确性 | 帕金森病的早期检测 | 机器学习 | 神经退行性疾病 | 多模态深度学习 | DenseNet, ResNet, Vision Transformer (ViT) | 影像和临床数据 | 利用了Parkinson's Progression Markers Initiative数据库的数据 |