本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7461 | 2024-09-08 |
Deep match: A zero-shot framework for improved fiducial-free respiratory motion tracking
2024-05, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2024.110179
PMID:38403025
|
研究论文 | 提出了一种基于深度学习的模板匹配算法Deep Match,用于改进无标记的呼吸运动跟踪 | Deep Match是一种零样本学习网络,无需在患者数据上进行训练,能够显著提高无标记跟踪的性能 | NA | 旨在改进肺部立体定向放疗中的无标记呼吸运动跟踪 | 肺部肿瘤及其在X射线图像中的运动跟踪 | 计算机视觉 | 肺部疾病 | 深度学习 | 深度学习网络 | 图像 | 10名患者,共38次治疗,2661张图像 |
7462 | 2024-09-08 |
Deep5hmC: Predicting genome-wide 5-Hydroxymethylcytosine landscape via a multimodal deep learning model
2024-Mar-06, bioRxiv : the preprint server for biology
DOI:10.1101/2024.03.04.583444
PMID:38496575
|
研究论文 | 本文介绍了一种名为Deep5hmC的多模态深度学习框架,用于预测全基因组范围内的5-羟甲基胞嘧啶修饰 | Deep5hmC通过整合DNA序列和组蛋白修饰信息,显著提高了5hmC修饰的定性和定量预测能力 | NA | 开发一种能够准确预测全基因组范围内5-羟甲基胞嘧啶修饰的深度学习模型 | 5-羟甲基胞嘧啶修饰及其在基因表达调控中的作用 | 机器学习 | 阿尔茨海默病 | 深度学习 | 多模态深度学习模型 | DNA序列和组蛋白修饰数据 | 在四个时间点的前脑类器官发育和17种人体组织中收集的5hmC测序数据 |
7463 | 2024-09-08 |
An open-source toolbox for measuring vocal tract shape from real-time magnetic resonance images
2024-03, Behavior research methods
IF:4.6Q1
DOI:10.3758/s13428-023-02171-9
PMID:37507650
|
研究论文 | 本文介绍了一种从实时磁共振图像中测量声道形状的开源工具箱 | 提出了一个信号处理流程,能够从唇部到喉部的实时磁共振图像中生成声道轮廓,量化声道的动态形态 | 该方法依赖于研究者指定的感兴趣区域,且尚未完全自动化 | 开发一种能够从实时磁共振图像中量化声道形态的工具 | 实时磁共振图像中的声道形态 | 计算机视觉 | NA | 实时磁共振成像 (rtMRI) | NA | 图像 | 涵盖了多种行为的数据集,如说话、夸张的语音、笑声和口哨声 |
7464 | 2024-09-08 |
Characterisation of quantitative imaging biomarkers for inflammatory and fibrotic radiation-induced lung injuries using preclinical radiomics
2024-03, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2024.110106
PMID:38253201
|
研究论文 | 本研究利用放射组学技术,通过定量影像生物标志物识别急性炎症和晚期纤维化放射性肺损伤的预后和预测标志物 | 首次在临床前模型中应用深度学习放射组学技术,建立了急性炎症和晚期肺损伤的预测模型 | 研究仅限于小鼠模型,尚未在人类中验证 | 识别与放射性肺损伤相关的放射组学特征,并建立预测模型 | C3H/HeN和C57BL6小鼠的放射性肺损伤 | 数字病理学 | 肺损伤 | 放射组学 | 随机森林分类器 | 影像 | C3H/HeN和C57BL6小鼠各若干只 |
7465 | 2024-09-08 |
Evaluating AI-generated CBCT-based synthetic CT images for target delineation in palliative treatments of pelvic bone metastasis at conventional C-arm linacs
2024-03, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2024.110110
PMID:38272314
|
研究论文 | 评估基于AI生成的CBCT合成CT图像在常规C臂直线加速器上进行骨盆骨转移姑息治疗中的靶区勾画和治疗计划的可行性 | 利用深度学习模型生成CBCT合成CT图像,以提高常规C臂直线加速器上姑息治疗中靶区勾画的准确性 | 部分合成CT图像质量不足,需要通过增加PTV边距来补偿 | 评估AI生成的CBCT合成CT图像在姑息放射治疗中的靶区勾画和治疗计划的可行性 | 22名骨盆骨转移的女性患者 | 计算机视觉 | 骨转移 | 深度学习 | 深度学习模型 | 图像 | 22名女性患者,23个靶区 |
7466 | 2024-09-08 |
ParaPET: non-invasive deep learning method for direct parametric brain PET reconstruction using histoimages
2024-Jan-30, EJNMMI research
IF:3.1Q1
DOI:10.1186/s13550-024-01072-y
PMID:38289518
|
研究论文 | 提出了一种基于深度学习的非侵入性方法,用于直接从时间飞行PET数据生成的histoimages重建高质量的脑部参数图像 | 无需侵入性动脉采样、MRI扫描或标准视野扫描仪的配对训练数据,显著提高了参数图像的估计质量 | NA | 开发一种非侵入性的深度学习方法,用于直接重建高质量的脑部参数PET图像 | 脑部参数图像的重建 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 图像 | 模拟幻影和五名接受18F-FDG-PET脑部扫描的肿瘤患者 |
7467 | 2024-09-08 |
Detecting pediatric appendicular fractures using artificial intelligence
2024, Revista da Associacao Medica Brasileira (1992)
DOI:10.1590/1806-9282.20240523
PMID:39230068
|
研究论文 | 评估深度学习人工智能模型在急诊科检测儿童四肢骨折的诊断准确性 | 开发了一种基于深度学习的人工智能模型,用于检测儿童四肢骨折,并评估其对急诊医生诊断能力的辅助支持效果 | NA | 评估人工智能模型在检测儿童急性四肢骨折中的诊断准确性,并研究其对急诊医生诊断能力的影响 | 儿童四肢骨折的检测 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 5150张X光片,其中850张显示骨折,4300张未显示骨折 |
7468 | 2024-09-08 |
Iteratively Refined Image Reconstruction with Learned Attentive Regularizers
2024, Numerical functional analysis and optimization
IF:1.4Q2
DOI:10.1080/01630563.2024.2384849
PMID:39233889
|
研究论文 | 提出了一种利用深度学习能力并基于经典稀疏促进模型的图像重建正则化方案 | 该方案可解释性强,因为它对应于一系列凸问题的最小化,并且在每个问题中,基于先前解生成的掩码用于空间上细化正则化强度,使模型逐渐关注图像结构 | NA | 开发一种可解释性强且具有理论保证的图像重建方法 | 图像重建中的正则化方案 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
7469 | 2024-09-08 |
Global bibliometric mapping of the research trends in artificial intelligence-based digital pathology for lung cancer over the past two decades
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241277735
PMID:39233894
|
研究论文 | 本文通过文献计量分析,探讨了过去二十年人工智能辅助数字病理学在肺癌研究中的趋势和热点 | 首次对人工智能辅助数字病理学在肺癌领域的研究进行了全面的文献计量分析 | 研究主要基于独立的国家研究,缺乏国际间的学术合作和数据共享 | 分析人工智能辅助数字病理学在肺癌研究中的趋势、热点和研究空白 | 过去二十年发表的197篇与数字病理学和肺癌相关的文献 | 数字病理学 | 肺癌 | 文献计量分析 | NA | 文献 | 197篇文献,涉及502个机构和39个国家 |
7470 | 2024-09-08 |
Comprehensive hepatotoxicity prediction: ensemble model integrating machine learning and deep learning
2024, Frontiers in pharmacology
IF:4.4Q1
DOI:10.3389/fphar.2024.1441587
PMID:39234116
|
研究论文 | 本文开发了一种集成模型,结合机器学习和深度学习算法,用于预测化学品和药物的肝毒性 | 本文创新性地采用了集成策略,将机器学习和深度学习算法结合,以提高肝毒性预测的准确性 | NA | 开发一种可靠的模型,用于预测化学品和药物对肝脏的潜在损害 | 化学品和药物的肝毒性 | 机器学习 | NA | 机器学习 (ML) 和深度学习 (DL) | 集成模型 | 分子特征 | 2588种化学品和药物 |
7471 | 2024-09-07 |
Integrating multi-task and cost-sensitive learning for predicting mortality risk of chronic diseases in the elderly using real-world data
2024-Nov, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105567
PMID:39068894
|
研究论文 | 本文提出了一种结合多任务学习和成本敏感学习的深度学习框架,用于预测老年人慢性疾病的死亡风险 | 本文的创新点在于将多任务学习和成本敏感学习相结合,以解决慢性疾病患者共病和类别不平衡问题 | NA | 开发一种能够准确预测老年人慢性疾病死亡风险的深度学习框架 | 老年人慢性疾病的死亡风险 | 机器学习 | NA | 深度学习 | 深度神经网络 | 真实世界数据 | 482,145名患者(包括9,516例死亡) |
7472 | 2024-09-07 |
Boosting the performance of molecular property prediction via graph-text alignment and multi-granularity representation enhancement
2024-Nov, Journal of molecular graphics & modelling
IF:2.7Q2
DOI:10.1016/j.jmgm.2024.108843
PMID:39173218
|
研究论文 | 本文提出了一种通过图-文本对齐和多粒度表示增强来提升分子性质预测性能的方法 | 通过对比损失和交叉注意力机制在嵌入空间中对齐和融合图和文本特征,并引入多粒度信息增强分子表示 | 未提及 | 提升分子性质预测的准确性 | 分子性质预测 | 机器学习 | NA | 对比损失、交叉注意力机制 | NA | 图、文本 | 未提及 |
7473 | 2024-09-07 |
CT-Net: an interpretable CNN-Transformer fusion network for fNIRS classification
2024-Oct, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-024-03138-4
PMID:38816665
|
研究论文 | 本文提出了一种基于卷积神经网络和Transformer的新方法CT-Net,用于功能性近红外光谱(fNIRS)分类,特别是用于心理算术任务的分类 | CT-Net结合了卷积神经网络和Transformer的优点,设计了一种时间层次的原始色团信号组合,以提高数据利用率和模型特征学习能力 | NA | 探索和改进功能性近红外光谱(fNIRS)在心理算术任务分类中的应用 | 心理算术任务的分类 | 机器学习 | NA | 功能性近红外光谱(fNIRS) | 卷积神经网络(CNN)和Transformer | 光谱数据 | 两个公开数据集 |
7474 | 2024-09-07 |
A comparative analysis of different augmentations for brain images
2024-Oct, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-024-03127-7
PMID:38782880
|
研究论文 | 本文比较了不同数据增强方法对脑部CT图像的性能影响 | 本文首次将数据增强方法分为四类,并系统地分析了它们在脑部CT图像上的应用效果 | 本文仅限于脑部CT图像,未涵盖其他类型的医学图像 | 评估不同数据增强方法在脑部CT图像上的性能,以提高模型准确性和鲁棒性 | 脑部CT图像 | 计算机视觉 | NA | 数据增强 | 深度学习模型 | 图像 | 未明确提及具体样本数量 |
7475 | 2024-09-07 |
BranchLabelNet: Anatomical Human Airway Labeling Approach using a Dividing-and-Grouping Multi-Label Classification
2024-Oct, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-024-03119-7
PMID:38777935
|
研究论文 | 本文介绍了一种名为BranchLabelNet的创新性气道标记方法,利用分治多标签分类技术对人类解剖学气道进行标记 | BranchLabelNet方法考虑了气道的分形特性和固有的层次分支命名法,采用n-ary树结构管理复杂的分支数据,并通过分治多标签分类技术简化了气道分支的标记过程 | NA | 开发一种精确的气道标记方法,以辅助肺部疾病的诊断和治疗 | 人类解剖学气道及其分支 | 计算机视觉 | 肺部疾病 | 分治多标签分类 | NA | 图像 | 1000张胸部CT图像 |
7476 | 2024-09-07 |
SDF4CHD: Generative modeling of cardiac anatomies with congenital heart defects
2024-Oct, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103293
PMID:39146700
|
研究论文 | 本文提出了一种基于深度学习的生成模型,用于模拟具有先天性心脏病的患者心脏解剖结构 | 本文提出了一种类型和形状解耦的生成方法,能够捕捉不同先天性心脏病类型的心脏解剖结构的广泛变化,并生成保留特定先天性心脏病类型独特拓扑结构的虚拟心脏解剖结构 | 本文的局限性在于仅在67名患者的数据集上进行了训练,未来需要更大规模的数据集进行验证 | 本文的研究目的是开发一种能够生成具有先天性心脏病患者心脏解剖结构的生成模型,以改进诊断和治疗计划 | 本文的研究对象是具有先天性心脏病的患者心脏解剖结构 | 计算机视觉 | 先天性心脏病 | 深度学习 | 生成模型 | 图像 | 67名患者,涵盖6种先天性心脏病类型和14种先天性心脏病类型组合 |
7477 | 2024-09-07 |
An In-Situ Visual Analytics Framework for Deep Neural Networks
2024-Oct, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2023.3339585
PMID:38051629
|
研究论文 | 本文提出了一种用于深度神经网络训练的原位可视化分析框架 | 通过特征提取算法减少训练相关数据的规模,并实时进行可视化分析,使模型设计者能够实时干预训练过程 | NA | 解决深度神经网络训练中的复杂性和效率问题 | 深度神经网络的训练过程 | 计算机视觉 | NA | 特征提取算法 | 深度神经网络 (DNN) | 时间序列数据 | NA |
7478 | 2024-09-07 |
KD-INR: Time-Varying Volumetric Data Compression via Knowledge Distillation-Based Implicit Neural Representation
2024-Oct, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2023.3345373
PMID:38127599
|
研究论文 | 提出了一种基于知识蒸馏的隐式神经表示(KD-INR)方法,用于压缩大规模时变体积数据 | 通过空间压缩和模型聚合两阶段方法,结合隐式神经表示和知识蒸馏技术,实现了高效的时变体积数据压缩 | 未提及 | 解决传统深度学习算法在处理大规模时变数据时的挑战 | 时变体积数据 | 计算机视觉 | NA | 知识蒸馏,隐式神经表示 | 隐式神经表示模型 | 体积数据 | 多种时变体积数据集 |
7479 | 2024-09-07 |
Leveraging the Capabilities of AI: Novice Neurology-Trained Operators Performing Cardiac POCUS in Patients with Acute Brain Injury
2024-Oct, Neurocritical care
IF:3.1Q2
DOI:10.1007/s12028-024-01953-z
PMID:38506968
|
研究论文 | 研究探讨了在急性脑损伤患者中,使用深度学习算法辅助的AI系统帮助新手神经科医生进行心脏POCUS检查的效果 | 首次使用深度学习算法辅助AI系统指导新手神经科医生进行心脏POCUS检查,以获取诊断质量的心脏图像 | 研究样本量较小,且仅限于学术三级NICU中的神经科医生 | 评估在急性脑损伤患者中,新手神经科医生使用深度学习算法辅助的AI系统进行心脏POCUS检查的图像质量和临床管理变化 | 急性脑损伤患者和新手神经科医生 | 机器学习 | 急性脑损伤 | 深度学习算法 | 深度学习 | 图像 | 153名患者,184次扫描,共943张图像 |
7480 | 2024-09-07 |
Rotation Equivariant Proximal Operator for Deep Unfolding Methods in Image Restoration
2024-Oct, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3383532
PMID:38557620
|
研究论文 | 本文提出了一种旋转等变近端网络,用于图像恢复任务中的深度展开方法 | 首次推导了任意层和任意旋转角度下近端网络的理论等变误差,并验证了其在不同视觉任务中的性能提升 | 当前的深度展开方法中的近端网络主要基于CNN架构,难以捕捉旋转对称性先验 | 解决现有深度展开方法在捕捉旋转对称性先验方面的不足,提升图像恢复任务的性能 | 图像恢复任务中的近端网络设计 | 计算机视觉 | NA | 深度展开方法 | 旋转等变近端网络 | 图像 | NA |