深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 12073 篇文献,本页显示第 8461 - 8480 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
8461 2024-08-22
Radiomics based on T2-weighted and diffusion-weighted MR imaging for preoperative prediction of tumor deposits in rectal cancer
2024-Jun, American journal of surgery IF:2.7Q1
研究论文 本研究旨在开发和验证基于T2加权(T2WI)和扩散加权磁共振成像(DWI)的放射组学诺模图,用于直肠癌患者术前肿瘤沉积(TDs)的识别 本研究构建的放射组学诺模图结合了Rad-score(T2WI + ADC)和临床因素,显示出优于随机森林、支持向量机和深度学习模型的性能 NA 开发和验证一种基于T2WI和DWI的放射组学诺模图,用于直肠癌患者术前肿瘤沉积的预测 直肠癌患者的肿瘤沉积 数字病理学 直肠癌 磁共振成像(MRI) 诺模图 图像 共199名直肠癌患者,分为训练集(159名)和验证集(40名)
8462 2024-08-22
Evaluation method for ecology-agriculture-urban spaces based on deep learning
2024-05-18, Scientific reports IF:3.8Q1
research paper 本研究基于自注意力残差神经网络(SARes-NET)模型,评估了中国榆林市的生态-农业-城市空间 本研究采用了自注意力残差神经网络(SARes-NET)模型,该模型在模拟性能上优于其他五种模型,能够捕捉复杂的非线性关系并减少数据处理中的人为错误 NA 协调城市发展、粮食安全和生态保护,促进可持续发展 中国榆林市的生态-农业-城市空间 computer vision NA deep learning Self-Attention Residual Neural Network (SARes-NET) spatial data NA
8463 2024-08-22
Real-time visualization of dextran extravasation in intermittent hypoxia mice using noninvasive SWIR imaging
2024-04-01, American journal of physiology. Heart and circulatory physiology
研究论文 本研究利用短波红外(SWIR)成像技术,结合血管分割和深度学习分析,实时监测间歇性低氧小鼠模型中的葡聚糖渗出情况 首次报道了间歇性低氧暴露14天后,小鼠模型中70 kDa葡聚糖的实时渗出增加 NA 研究间歇性低氧条件下血管通透性的变化 C57Bl/6小鼠在间歇性低氧和常氧条件下的血管通透性 数字病理学 睡眠呼吸障碍 短波红外(SWIR)成像 深度学习 图像 C57Bl/6小鼠在间歇性低氧和常氧条件下暴露14天
8464 2024-08-22
Continual learning framework for a multicenter study with an application to electrocardiogram
2024-Mar-06, BMC medical informatics and decision making IF:3.3Q2
研究论文 本文提出了一种无需中央服务器的持续学习框架,用于多中心研究,并应用于心电图分析 该框架能够防止先前训练知识的灾难性遗忘,并通过生成对抗网络生成的假数据进行前瞻性评估 NA 旨在解决多中心数据联合研究中数据共享的隐私问题和中央服务器的成本及法律限制 心电图数据集和心律失常检测模型 机器学习 心血管疾病 生成对抗网络 NA 心电图数据 四个独立的心电图数据集
8465 2024-08-22
Deep learning models reveal replicable, generalizable, and behaviorally relevant sex differences in human functional brain organization
2024-Feb-27, Proceedings of the National Academy of Sciences of the United States of America IF:9.4Q1
研究论文 本文使用时空深度神经网络(stDNN)模型揭示了人类功能性脑组织的性别差异及其行为相关性 本文通过stDNN模型和可解释AI(XAI)分析,揭示了高度可复制和可泛化的性别差异,并预测了性别特定的认知特征 NA 探讨人类功能性脑组织的性别差异及其行为后果 男性与女性大脑的功能性脑动态 机器学习 NA 时空深度神经网络(stDNN) 深度神经网络 功能性脑数据 约1,500名20至35岁的年轻成年人
8466 2024-08-22
filoVision - using deep learning and tip markers to automate filopodia analysis
2024-02-15, Journal of cell science IF:3.3Q3
研究论文 本文介绍了一种名为filoVision的深度学习平台,用于自动化分析带有标记的丝状伪足 filoVision平台通过filoTips和filoSkeleton工具,能够在没有肌动蛋白或膜标记的情况下,仅使用单一的丝状伪足尖端标记进行信息提取,并结合肌动蛋白标记进行更全面的分析 NA 开发一种适用于不同细胞类型和可视化方法的自动化丝状伪足分析流程 丝状伪足的自动化分析 计算机视觉 NA 深度学习 NA 图像 NA
8467 2024-08-22
M-VAAL: Multimodal Variational Adversarial Active Learning for Downstream Medical Image Analysis Tasks
2024, Medical Image Understanding and Analysis. Medical Image Understanding and Analysis (Conference)
研究论文 本文提出了一种多模态变分对抗主动学习方法(M-VAAL),用于提高医学图像分析任务中的数据效率 M-VAAL方法利用多模态辅助信息增强主动采样,提高模型的鲁棒性 NA 旨在减少医学领域中大规模标注样本的需求,通过主动学习选择最有信息量的样本进行标注 脑肿瘤分割与多标签分类,以及胸部X光图像分类 计算机视觉 NA 变分对抗主动学习 变分对抗网络 图像 使用了BraTS2018数据集和COVID-QU-Ex数据集
8468 2024-08-22
A retrospective evaluation of individual thigh muscle volume disparities based on hip fracture types in followed-up patients: an AI-based segmentation approach using UNETR
2024, PeerJ IF:2.3Q2
研究论文 本研究使用基于UNETR的AI自动分割模型,评估了随访的髋部骨折患者中不同类型骨折导致的单个大腿肌肉体积差异 采用基于深度学习算法的自动肌肉分割模型,实现了对大腿肌肉体积差异的高效准确分析 研究样本量较小,仅包括18名患者 评估髋部骨折患者随访期间大腿肌肉体积的变化,并指导康复干预 髋部骨折患者的单个大腿肌肉体积 计算机视觉 骨折 CT扫描 UNETR 图像 18名髋部骨折手术治疗后的患者
8469 2024-08-21
Analyzing pain patterns in the emergency department: Leveraging clinical text deep learning models for real-world insights
2024-Oct, International journal of medical informatics IF:3.7Q2
研究论文 本研究利用临床文本深度学习模型分析澳大利亚某大城市的急诊部门中患者的疼痛发生率 采用细调的领域特定转换器基础临床文本深度学习模型,自动识别常规收集的医疗记录中的疼痛情况 NA 确定使用临床文本深度学习算法在大型澳大利亚内城急诊部门中疼痛患者的发生率 分析急诊部门中患者的疼痛模式及其随时间的变化,特别是在新冠疫情开始后的变化 自然语言处理 NA 临床文本深度学习 转换器基础模型 文本 235,789名成年患者
8470 2024-08-21
Utilizing deep learning algorithms for automated oil spill detection in medium resolution optical imagery
2024-Sep, Marine pollution bulletin IF:5.3Q1
研究论文 本研究评估了三种典型的基于卷积神经网络的深度学习算法在利用中分辨率光学卫星图像进行溢油检测中的性能 研究通过集成注意力机制,包括挤压与激励模块(SE)、卷积块注意力模块(CBAM)和简单无参数注意力模块(SimAM),改进了UNet、BiSeNetV2和DeepLabV3+架构 NA 评估深度学习算法在中分辨率光学卫星图像中自动检测溢油的性能 溢油检测 计算机视觉 NA 深度学习算法 CNN 图像 基于全球报告的慢性和意外溢油案例创建的训练和验证数据集
8471 2024-08-21
Automatic segmentation of knee CT images of tibial plateau fractures based on three-dimensional U-Net: Assisting junior physicians with Schatzker classification
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 本研究旨在使用基于三维U-Net的方法自动分割膝关节CT图像中的胫骨平台骨折,并构建精确的胫骨平台骨折三维图谱,以辅助Schatzker分类在临床实践中的应用 提出了一种基于三维U-Net的方法,能够快速且准确地分割膝关节CT图像中的胫骨平台骨折,并辅助Schatzker分类 研究是回顾性的,样本来自单一医院,可能存在样本偏倚 开发一种自动分割膝关节CT图像中胫骨平台骨折的方法,以辅助Schatzker分类 膝关节CT图像中的胫骨平台骨折 计算机视觉 骨折 三维U-Net U-Net 图像 234例胫骨平台骨折病例
8472 2024-08-21
Development of a ship-based camera monitoring system for floating marine debris
2024-Sep, Marine pollution bulletin IF:5.3Q1
研究论文 本研究开发了一种用于监测海洋漂浮垃圾的自动化监控系统 利用YOLOv8架构的深度学习模型和BoT-SORT算法进行海洋漂浮垃圾的跟踪和检测 系统主要针对大于20厘米的海洋漂浮垃圾 旨在减少传统视觉调查的劳动密集性 海洋漂浮垃圾 计算机视觉 NA YOLOv8, BoT-SORT 深度学习模型 视频, 图像 55.6小时视频和大量标注图像
8473 2024-08-21
Differential diagnostic value of radiomics models in benign versus malignant vertebral compression fractures: A systematic review and meta-analysis
2024-Sep, European journal of radiology IF:3.2Q1
meta-analysis 本研究通过系统综述和荟萃分析,评估了放射组学模型在区分良性和恶性椎体压缩性骨折中的诊断效能 放射组学模型在区分良性和恶性椎体压缩性骨折中的诊断效能显著,优于传统放射科医生的诊断 已发表的放射组学模型存在较大异质性,需要更多大规模临床试验来验证其普遍适用性 量化放射组学模型在区分良性和恶性椎体压缩性骨折中的诊断效能 良性和恶性椎体压缩性骨折的诊断 digital pathology NA 放射组学 NA 影像数据 共涉及1,519个经病理诊断的肿瘤浸润椎体
8474 2024-08-21
Enhancing water quality monitoring through the integration of deep learning neural networks and fuzzy method
2024-Sep, Marine pollution bulletin IF:5.3Q1
研究论文 本研究通过整合深度学习神经网络和模糊方法,对伊朗西南部地区的水样进行空间分析,并生成水质地图,同时预测未来水质污染趋势 本研究采用了LSTM模型进行水质预测,并展示了其优越的预测性能 NA 提高水质监测的效率和准确性 伊朗西南部地区的水质 机器学习 NA 深度学习神经网络 LSTM 水质数据 伊朗西南部地区的水样
8475 2024-08-21
BraNet: a mobil application for breast image classification based on deep learning algorithms
2024-Sep, Medical & biological engineering & computing IF:2.6Q3
研究论文 本研究开发了一款名为BraNet的开源移动应用,用于基于深度学习算法的二维乳腺影像分割和分类 BraNet应用在良性与恶性超声图像分类中表现出比数字乳腺摄影更高的准确性 深度学习算法在训练时需要考虑数据量和异常类型的多样性,特别是在乳腺摄影数据中 开发一款用于乳腺影像分类的移动应用,提高诊断准确性并减少误诊 乳腺影像的分割和分类 计算机视觉 乳腺癌 深度学习算法 SNGAN, SAM, ResNet18 图像 290张原始感兴趣区域(RoI)图像
8476 2024-08-21
SpanSeq: similarity-based sequence data splitting method for improved development and assessment of deep learning projects
2024-Sep, NAR genomics and bioinformatics IF:4.0Q1
研究论文 本文介绍了一种名为SpanSeq的基于相似性的序列数据分割方法,用于改进深度学习项目的开发和评估 SpanSeq方法能够避免数据集之间的数据泄露,适用于大多数生物序列(基因、蛋白质和基因组) NA 探索深度学习模型在计算生物学中的应用,并改进数据分割方法以提高模型评估的准确性 深度学习模型在生物信息学中的应用 机器学习 NA 深度学习 深度学习模型 序列数据 NA
8477 2024-08-21
Predicting Emission Spectra of Heteroleptic Iridium Complexes Using Artificial Chemical Intelligence
2024-Aug-19, Chemphyschem : a European journal of chemical physics and physical chemistry IF:2.3Q2
研究论文 本文报道了一种基于深度学习的方法,用于精确预测磷光异配位[Ir( )( )]配合物的发射光谱 该方法利用图神经网络和其他化学特征,能够超越传统DFT和相关波函数方法的准确性,并对不完美的训练光谱具有鲁棒性 NA 旨在快速发现新型Ir(III)染料,用于有机发光二极管和太阳能燃料电池等应用 磷光异配位[Ir( )( )]配合物的发射光谱 机器学习 NA 深度学习 图神经网络 实验数据 NA
8478 2024-08-21
Enhancing dental interns' proficiency in operating electronic facebows through scenario-training-based deep learning method
2024-Aug-19, Journal of dental education IF:1.4Q3
NA NA NA NA NA NA NA NA NA NA NA NA
8479 2024-08-21
An efficient colorectal cancer detection network using atrous convolution with coordinate attention transformer and histopathological images
2024-08-17, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种结合坐标注意力变换器和空洞卷积的新型结直肠癌检测网络(CCDNet),用于提高组织病理学图像中癌症分类和肿瘤定位的准确性 引入了一种新的空洞卷积与坐标注意力变换器(AConvCAT),结合了两种网络的优势,通过捕捉局部和全局信息来分类不同尺度的结直肠组织 NA 提高结直肠癌在组织病理学图像中的检测准确性 结直肠癌的组织病理学图像 计算机视觉 结直肠癌 空洞卷积 CNN 图像 使用了结直肠组织病理学图像和NCT-CRC-HE-100K数据集
8480 2024-08-21
Application of artificial intelligence in the diagnosis and treatment of Kawasaki disease
2024-Aug-16, World journal of clinical cases IF:1.0Q3
评论 本文评论了人工智能在川崎病诊断和治疗中的应用潜力和局限性 探讨了机器学习、基因信号计算工具箱和深度学习在川崎病诊断中的创新应用 强调了提高AI决策准确性、保护患者个人信息和明确AI决策责任的重要性 探讨人工智能在川崎病诊断和治疗中的应用 川崎病的诊断和治疗 机器学习 川崎病 机器学习 (ML), 深度学习 (DL) NA 医学数据 NA
回到顶部