深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 12073 篇文献,本页显示第 8521 - 8540 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
8521 2024-08-20
Estimating three-dimensional foot bone kinematics from skin markers using a deep learning neural network model
2024-Aug, Journal of biomechanics IF:2.4Q3
研究论文 本研究提出了一种深度学习神经网络模型,用于通过皮肤标记估计三维足骨运动学 该研究首次使用非侵入性方法通过皮肤标记来估计足骨的运动学,填补了这一领域的空白 NA 旨在开发一种非侵入性方法来测量足骨在运动中的运动学 人类足部的26块骨头及其在运动中的协调运动 计算机视觉 NA 深度学习 神经网络 图像 11名健康成年人和13具尸体标本
8522 2024-08-20
[Deep Learning-Based Artificial Intelligence Model for Automatic Carotid Plaque Identification]
2024-Jul-30, Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation
研究论文 本研究开发了一个用于检测颈动脉超声图像中斑块存在的数据集,并利用结合双线性卷积神经网络与残差神经网络的单输入BCNN-ResNet模型进行诊断 提出的单输入BCNN-ResNet网络模型在内部和外部验证中均显示出优于ResNet-34网络模型的诊断能力 NA 开发一个自动检测颈动脉斑块的人工智能模型 颈动脉斑块的自动识别 计算机视觉 心血管疾病 深度学习 BCNN-ResNet 图像 1761张超声图像,来自1165名参与者
8523 2024-08-20
[Development of an Intelligent Multi-Parameter Sleep Diagnosis and Analysis System]
2024-Jul-30, Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation
研究论文 开发了一种智能多参数睡眠诊断与分析系统,旨在改善睡眠障碍呼吸(SDB)的诊断方法 该系统引入了数据质量控制、气体代谢评估和血流动力学监测功能,并采用深度学习方法进行智能数据分析 NA 开发一种新的智能PSG系统,以提高SDB的诊断效率和准确性 睡眠障碍呼吸(SDB)患者 生物医学工程 睡眠障碍 深度学习 NA 生理信号数据 NA
8524 2024-08-20
[Practical Application of Intelligent Vision Measurement System Based on Deep Learning]
2024-Jul-30, Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation
研究论文 设计并开发了一种基于深度学习的智能视觉测量系统,用于从侧面检测和分析干眼症患者的眨眼特征 采用深度学习关键点识别技术从侧面分析眼睑特征,并自动计算完整和不完整眨眼的比率 NA 全面评估临床干眼症患者的真实视觉功能及眨眼特征对视觉功能的影响 干眼症患者的眨眼特征 计算机视觉 干眼症 深度学习 NA 图像 NA
8525 2024-08-20
[Application of Photoplethysmography Combined with Deep Learning in Postoperative Monitoring of Flaps]
2024-Jul-30, Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation
研究论文 本研究探讨了光电容积描记术(PPG)与一维卷积神经网络(1D-CNN)结合在皮肤瓣动脉术后监测中区分栓塞程度和定位栓塞部位的能力 首次结合PPG与1D-CNN进行皮肤瓣动脉的术后监测,能够有效识别栓塞程度和定位栓塞部位 NA 探索PPG与1D-CNN结合在皮肤瓣动脉术后监测中的应用 皮肤瓣动脉的栓塞程度和栓塞部位 机器学习 NA 光电容积描记术(PPG) 一维卷积神经网络(1D-CNN) 数据 使用了皮肤瓣动脉模型和兔皮肤瓣模型进行数据收集和验证
8526 2024-08-20
Using VIS-NIR hyperspectral imaging and deep learning for non-destructive high-throughput quantification and visualization of nutrients in wheat grains
2024-Jul-29, Food chemistry IF:8.5Q1
研究论文 本研究提出了一种利用可见-近红外高光谱成像和深度学习技术对小麦中的营养成分进行高通量、无损量化和可视化的方法 本研究首次提出了一种改进的pix2pix条件生成网络模型,用于可视化营养成分分布,并展示了比原始模型更好的结果 NA 开发一种高通量、低成本的方法来量化作物谷物中的营养成分,以促进食品加工和营养研究 小麦中的营养成分 机器学习 NA 可见-近红外高光谱成像 pix2pix条件生成网络 高光谱图像 数百种营养成分
8527 2024-08-20
The scope of artificial intelligence in retinopathy of prematurity (ROP) management
2024-Jul-01, Indian journal of ophthalmology IF:2.1Q2
研究论文 本文探讨了人工智能在早产儿视网膜病变(ROP)管理中的应用范围 文章介绍了深度学习技术在ROP筛查中的应用,特别是卷积神经网络(CNN)在图像处理和认知任务中的优势 文章提到了AI系统在不同人群数据集上的性能差异,以及对AI实施的医疗法律方面的担忧 研究旨在探索人工智能技术在ROP管理中的应用潜力 研究对象为早产儿视网膜病变(ROP)及其管理 机器学习 早产儿疾病 深度学习 卷积神经网络(CNN) 图像 使用了印度数据集进行AI风险模型的验证
8528 2024-08-20
Diagnostic performance of deep learning to exclude coronary stenosis on CT angiography in TAVI patients
2024-May, The international journal of cardiovascular imaging
研究论文 评估深度学习模型在TAVI患者中通过冠状动脉CT血管造影排除冠状动脉狭窄的诊断性能 深度学习模型在检测>50%冠状动脉狭窄方面具有100%的敏感性和100%的阴性预测值,与经验丰富的放射科医生表现相似 深度学习模型的阳性预测值较低,仅为39% 评估深度学习模型在冠状动脉CT血管造影中自动检测>50%冠状动脉狭窄的诊断性能,并研究观察者间变异性 TAVI患者中的冠状动脉CT血管造影图像 计算机视觉 心血管疾病 冠状动脉CT血管造影 深度学习模型 图像 100名患者
8529 2024-08-20
Three-dimensional reconstruction of industrial parts from a single image
2024-Mar-27, Visual computing for industry, biomedicine, and art
研究论文 本研究提出了一种基于图像的三维(3D)矢量重建工业零件的方法,能够生成高保真度和灵活性的非均匀有理B样条(NURBS)表面 本研究的创新点包括构建了一个用于典型工业零件的二维图像数据集,开发了一种用于三维工业零件参数提取的深度学习算法,以及提出了一种从获得的形状参数生成NURBS的机械零件三维矢量形状重建方法 NA 研究目的是从单一图像中重建工业零件的三维模型 研究对象包括六角头螺栓、圆柱齿轮、肩环、六角螺母和圆柱滚子轴承等工业零件 计算机视觉 NA 深度学习 CNN 图像 包括六角头螺栓、圆柱齿轮、肩环、六角螺母和圆柱滚子轴承等工业零件的二维图像数据集
8530 2024-08-20
Physics-Informed Deep Learning Approach for Reintroducing Atomic Detail in Coarse-Grained Configurations of Multiple Poly(lactic acid) Stereoisomers
2024-03-25, Journal of chemical information and modeling IF:5.6Q1
研究论文 本文介绍了一种基于物理信息的深度学习方法,用于在粗粒度配置中重新引入多聚乳酸立体异构体的原子细节 该方法通过学习原子级别和相应粗粒度描述之间的结构相关性,提供了一种简单灵活且通用的分辨率转换解决方案 NA 旨在解决从粗粒度模型到原子模型的逆问题,即从粗粒度配置中重新引入原子自由度 多聚乳酸立体异构体的粗粒度分子配置 机器学习 NA 深度学习 深度学习模型 分子配置数据 从多聚乳酸的同聚体立体异构体到随机放置手性中心的共聚物等多种模型系统
8531 2024-08-19
Enhanced detection of Aspergillus flavus in peanut kernels using a multi-scale attention transformer (MSAT): Advancements in food safety and contamination analysis
2024-Oct-02, International journal of food microbiology IF:5.0Q1
研究论文 本研究使用多尺度注意力变换器(MSAT)结合高光谱成像技术,对受多种黄曲霉菌污染的花生仁进行分类 MSAT模型通过其复杂的多尺度注意力机制,显著优于传统的深度学习模型,特别是在分类能力上 MSAT模型在区分受黄曲霉素产生菌和非黄曲霉素产生菌污染的花生仁时面临挑战 提高食品质量和安全领域中黄曲霉菌污染的检测准确性和速度 受黄曲霉菌污染的花生仁 计算机视觉 NA 高光谱成像 多尺度注意力变换器(MSAT) 图像 NA
8532 2024-08-07
Corrigendum to "Advancing deep learning-based acoustic leak detection methods towards application for water distribution systems from a data-centric perspective" [Water Research 261(2024) 121999]
2024-Sep-15, Water research IF:11.4Q1
NA NA NA NA NA NA NA NA NA NA NA NA
8533 2024-08-19
Deep learning reconstructed T2-weighted Dixon imaging of the spine: Impact on acquisition time and image quality
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 评估基于深度学习的T2 Dixon序列(T2DL)对脊柱成像的图像质量和采集时间的影响 提出了一种新的基于深度学习的T2 Dixon序列(T2DL),能够在显著减少采集时间的同时保持与标准T2 Dixon序列(T2std)相当的图像质量 T2DL显示出更多的带状伪影,尽管这并未显著影响读者的诊断信心 评估T2DL序列在脊柱成像中的图像质量和采集时间的影响 44名连续患者,他们在2022年9月至2023年3月期间因临床需要进行腰椎MRI检查 计算机视觉 NA MRI 深度学习 图像 44名患者
8534 2024-08-19
Differentiation of tuberculous and brucellar spondylitis using conventional MRI-based deep learning algorithms
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 研究基于常规MRI的深度学习算法区分结核性脊椎炎和布鲁氏脊椎炎的可行性 使用基于VGG19、ResNet18、VGG16和DenseNet121的深度学习模型,结合T1WI、T2WI和FS T2WI图像,实现了优于单序列模型的诊断效率,并且性能超过两位放射科医生 NA 探索基于常规MRI的深度学习技术区分结核性脊椎炎和布鲁氏脊椎炎的可行性 结核性脊椎炎和布鲁氏脊椎炎的诊断 机器学习 NA 深度学习 VGG19, ResNet18, VGG16, DenseNet121 MRI图像 383名患者,包括182名结核性脊椎炎患者和201名布鲁氏脊椎炎患者
8535 2024-08-19
Diagnostic performance of an AI algorithm for the detection of appendicular bone fractures in pediatric patients
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 评估一种人工智能算法在常规X射线摄影中检测儿科患者四肢骨折的诊断性能 使用先前在成人和儿科患者中训练的人工智能算法来检测儿科患者的急性四肢骨折 回顾性研究,样本仅限于儿科患者的四肢X射线图像 评估人工智能算法在检测儿科患者四肢骨折中的诊断性能 儿科患者(年龄<17岁)的四肢X射线图像 计算机视觉 NA 深度学习 NA 图像 600张X射线图像,包括312名男性和288名女性,平均年龄8.9±4.5岁
8536 2024-08-19
Improving diagnostic confidence in low-dose dual-energy CTE with low energy level and deep learning reconstruction
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 本研究旨在展示使用50 keV虚拟单色图像结合深度学习图像重建(DLIR)在低剂量双能量CT肠造影(CTE)中的价值 使用50 keV虚拟单色图像和深度学习图像重建技术,能够在降低辐射剂量的同时提供高质量的图像,显著提高诊断信心 NA 验证50 keV虚拟单色图像结合深度学习图像重建在低剂量双能量CT肠造影中的应用价值 114名参与者(62%男性,41.9±16岁)的双能量CT肠造影图像 数字病理学 克罗恩病 双能量CT肠造影 深度学习图像重建(DLIR) 图像 114名参与者
8537 2024-08-19
Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 本研究评估了基于超分辨率深度学习重建(SR-DLR)方法在腰椎磁共振(MR)骨成像中的效果,该方法利用k空间数据,使用3D多回波同相序列进行图像重建。 本研究首次采用基于k空间数据的SR-DLR方法,显著提高了腰椎MR骨成像的图像质量。 本研究为回顾性研究,样本量较小,且仅限于特定时间段内的患者数据。 评估SR-DLR方法在提高腰椎MR骨成像质量中的有效性。 研究对象为29名在2023年1月至4月期间接受腰椎MRI检查的患者。 计算机视觉 NA 超分辨率深度学习重建(SR-DLR) 深度学习模型 图像 29名患者
8538 2024-08-19
Development and validation of a deep learning-based method for automatic measurement of uterus, fibroid, and ablated volume in MRI after MR-HIFU treatment of uterine fibroids
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 本文开发并验证了一种基于深度学习的自动测量方法,用于在MR-HIFU治疗后通过MRI测量子宫、肌瘤和消融体积。 该研究提出了一种自动化的计算机辅助方法,用于客观量化MR-HIFU治疗后的结果参数,相较于传统的视觉检查方法,提供了更客观的结果量化。 该方法的鲁棒性需要在未来的研究中进一步验证,以确保其在临床实践中的应用。 开发并评估一种基于深度学习的分割算法,用于自动量化MRI中的子宫、子宫肌瘤和非灌注体积(NPV),以计算NPV/TFL。 研究对象为115名接受或即将接受MR-HIFU治疗的子宫肌瘤患者。 机器学习 妇科疾病 MRI 神经网络 图像 115名子宫肌瘤患者
8539 2024-08-19
ChatGPT performance on the American Shoulder and Elbow Surgeons maintenance of certification exam
2024-Sep, Journal of shoulder and elbow surgery IF:2.9Q1
研究论文 本研究比较了ChatGPT 3.5、GPT-4和专业培训的外科医生在2023年美国肩肘外科医生(ASES)维持认证(MOC)自我评估考试中的表现 首次测试大型语言模型(LLMs)在手术亚专科考试中的表现 ChatGPT在图像为基础的问题上表现不如人类 评估大型语言模型在专业外科考试中的表现 ChatGPT 3.5、GPT-4和专业培训的外科医生 NA NA 深度学习 LLMs 文本和图像 NA
8540 2024-08-19
SleepBoost: a multi-level tree-based ensemble model for automatic sleep stage classification
2024-Sep, Medical & biological engineering & computing IF:2.6Q3
研究论文 本文介绍了一种名为SleepBoost的多层次树基集成模型,用于自动睡眠阶段分类 SleepBoost模型通过集成三个基本线性模型并采用新颖的基于奖励的自适应权重分配机制,提高了模型的透明度和性能 NA 旨在提高自动睡眠阶段分类的透明度和性能,以促进其在临床中的应用 自动睡眠阶段分类 机器学习 NA 多层次树基集成模型 树基集成模型 时间域和频率域特征 使用了Sleep-EDF-20数据集
回到顶部