深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 12073 篇文献,本页显示第 861 - 880 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
861 2025-05-14
Early Multimodal Data Integration for Data-Driven Medical Research - A Scoping Review
2024-08-30, Studies in health technology and informatics
综述 本文通过范围综述分析了2019年至2024年间21篇关于早期多模态数据整合方法的文献,总结了这些方法的特点及其在数据驱动医学研究中的应用 将早期多模态数据整合方法分为四类,并总结了各类方法的特点,为数据驱动医学研究项目中选择最佳方法组合提供了参考 主要关注结构性整合,未深入比较早期和晚期多模态数据整合方法,且整合流程通常需要手动优化 探讨早期多模态数据整合方法在数据驱动医学研究中的应用和优化 21篇关于早期多模态数据整合方法的综述文献 数据驱动医学研究 NA 多模态数据整合方法,包括基本连接和深度学习等 NA 多模态数据 21篇综述文献
862 2025-05-14
Lossless compression-based detection of osteoporosis using bone X-ray imaging
2024, Journal of X-ray science and technology IF:1.7Q3
research paper 该研究提出了一种基于深度学习的无损压缩方法,用于通过骨X射线图像检测骨质疏松症 提出了一种新的图像处理方法,通过分离感兴趣区域(ROI)和非ROI来减少数据冗余,并结合SVM分类器提高诊断准确性 未提及样本多样性和外部验证结果 提高骨质疏松症的诊断准确性 骨X射线图像 digital pathology 骨质疏松症 深度学习,X射线成像 SVM image NA
863 2025-05-13
[Coronary artery segmentation based on Transformer and convolutional neural networks dual parallel branch encoder neural network]
2024-Dec-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
研究论文 提出了一种基于Transformer和CNN双并行分支编码器的新型神经网络DUNETR,用于冠状动脉CTA图像的分割 首次将Transformer和CNN作为双编码器集成,通过NRFF模块融合全局与局部特征,显著提升3D冠状动脉分割效果 未提及模型在小型医疗机构或低质量CT图像上的泛化能力 提高冠状动脉CTA图像自动分割的准确率 冠状动脉的3D CTA图像 计算机视觉 心血管疾病 CTA成像 DUNETR(Transformer+CNN双编码器U-Net变体) 3D医学图像 公开数据集(具体数量未说明)
864 2025-05-13
Thoracic Aortic Three-Dimensional Geometry
2024-Oct-31, bioRxiv : the preprint server for biology
research paper 该研究通过深度学习架构和形态学图像操作,全面量化了胸主动脉的三维几何参数,并在两个大型生物库中应用了该方法 首次在大规模人群中全面表征胸主动脉的三维几何结构,并开发了全自动量化方法 研究依赖于影像扫描的质量,且仅针对特定生物库数据 量化胸主动脉的三维几何结构,研究其与心血管健康和衰老的关系 胸主动脉的三维几何参数 digital pathology cardiovascular disease deep learning, morphological image operations deep learning architecture imaging scans 54,241 participants in the UK Biobank and 8,456 participants in the Penn Medicine Biobank
865 2025-05-13
Leveraging Large Language Models for Knowledge-free Weak Supervision in Clinical Natural Language Processing
2024-Jun-28, Research square
研究论文 本文提出了一种利用大型语言模型(LLMs)进行无领域知识的弱监督方法,用于临床自然语言处理任务 通过微调LLMs并采用基于提示的方法生成弱标记数据,结合少量黄金标准数据微调下游BERT模型,显著提升了性能 LLMs推理计算量大,且性能仍略低于使用大量黄金标准数据的传统监督方法 解决临床自然语言处理任务中标注数据稀缺的问题 临床文本数据 自然语言处理 NA 弱监督学习、上下文学习 LLM(Llama2)、BERT 文本 三个n2c2数据集,不超过10-50份黄金标准临床记录
866 2025-05-13
Improved stent sharpness evaluation with super-resolution deep learning reconstruction in coronary CT angiography
2024-Jun-18, The British journal of radiology
研究论文 本研究评估了超分辨率深度学习重建(SR-DLR)在冠状动脉CT血管造影(CCTA)中对图像质量和支架伪影的影响 首次将SR-DLR应用于CCTA图像重建,显著提高了支架的清晰度和图像质量 研究为回顾性分析,样本量较小(66例患者) 评估不同图像重建算法对冠状动脉支架成像质量的影响 冠状动脉CT血管造影图像 医学影像处理 心血管疾病 超分辨率深度学习重建(SR-DLR) 深度学习模型 医学影像 66例CCTA患者
867 2025-05-13
Leverage Weakly Annotation to Pixel-wise Annotation via Zero-shot Segment Anything Model for Molecular-empowered Learning
2024-Feb, Proceedings of SPIE--the International Society for Optical Engineering
research paper 该研究探讨了利用零样本学习的Segment Anything Model(SAM)从弱标注生成像素级标注,以降低病理图像分割的标注成本 提出SAM辅助的分子赋能学习(SAM-L),仅需弱框标注即可训练分割模型,减少非专业标注者的工作量 未明确说明SAM在不同细胞类型上的泛化能力及对IF图像依赖程度的影响 开发无需像素级标注的病理图像分割方法 高分辨率千兆像素全切片图像(WSI)中的多类细胞 digital pathology NA immunofluorescence(IF)成像,零样本学习 Segment Anything Model(SAM) 病理图像 NA
868 2025-05-13
High-performance Data Management for Whole Slide Image Analysis in Digital Pathology
2024-Feb, Proceedings of SPIE--the International Society for Optical Engineering
研究论文 本文介绍了一种针对数字病理学中全切片图像分析的高性能数据管理方法,使用ADIOS2系统优化数据访问和处理 首次在数字病理学领域应用ADIOS2系统,并开发了针对性的数据管理流程,显著提升了数据处理效率 仅针对特定两种场景(CPU和GPU)进行了性能评估,未涵盖更多可能的计算环境 解决数字病理学中全切片图像分析时的数据输入输出瓶颈问题 全切片图像(WSI)的数据管理流程 数字病理学 NA ADIOS2数据管理系统 NA 图像 NA
869 2025-05-12
Pre-trained Convolutional Neural Networks Identify Parkinson's Disease from Spectrogram Images of Voice Samples
2024-Dec-18, Research square
研究论文 该研究利用预训练的卷积神经网络通过声音样本的声谱图图像识别帕金森病 采用迁移学习的卷积神经网络分析持续元音/a/的声谱图图像,并在更大带宽的智能手机录音数据集上验证性能 电话线录音带宽有限可能影响特征提取 自动检测帕金森病 帕金森病患者的声音样本 数字病理学 帕金森病 声谱图分析 CNN(卷积神经网络) 图像(声谱图) 两个不同录音平台(电话线和智能手机)生成的声音数据集
870 2025-05-12
Precision in Prevention and Health Surveillance: How Artificial Intelligence May Improve the Time of Identification of Health Concerns through Social Media Content Analysis
2024-Aug, Yearbook of medical informatics
研究论文 探讨人工智能通过社交媒体内容分析如何提升预防和健康监测的精确性 利用AI技术分析社交媒体数据,提高健康问题的及时性和准确性识别 需解决伦理和隐私问题以确保负责任和有效的实施 提升预防和健康监测的精确性 社交媒体内容 自然语言处理 NA 机器学习、自然语言处理(NLP)、深度学习 transformer-based topic modelling、federated learning 文本 89篇文章,最终筛选10篇相关研究
871 2025-05-12
Year 2023 in Biomedical Natural Language Processing: a Tribute to Large Language Models and Generative AI
2024-Aug, Yearbook of medical informatics
综述 本文回顾了2023年生物医学自然语言处理领域的研究进展,重点介绍了大型语言模型和生成式AI的应用 总结了2023年NLP领域的两篇最佳论文,分析了当前研究趋势,包括数据增强、领域特定模型适应和模型蒸馏等创新点 仅涵盖2023年发表的论文,可能无法反映更长期的研究趋势 评估2023年生物医学自然语言处理领域的研究进展和趋势 2023年发表的2,148篇生物医学NLP相关论文 自然语言处理 COVID-19, 癌症, 心理健康 ChatGPT, 大型语言模型 大型语言模型 社交媒体内容, 电子健康记录 2,148篇论文
872 2025-05-12
EEG Emotion Recognition Based on 3D-CTransNet
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
research paper 提出了一种基于3D-CTransNet的EEG情绪识别方法,用于解决传统CNN-LSTM混合结构在长序列信号识别中的性能下降问题 采用混合CNN-Transformer结构(3D-CTransNet),引入自注意力机制和平行模式,提高了识别精度和处理速度 未提及具体局限性 改进脑机接口深度学习模型,提升EEG信号中复杂特征的识别能力 EEG信号 脑机接口 NA EEG信号处理 CNN-Transformer混合结构(3D-CTransNet) 3D数据 公共数据集DEAP
873 2025-05-12
An Attention-Based Hybrid Deep Learning Approach for Patient-Specific, Cross-Patient, and Patient-Independent Seizure Detection
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 提出了一种基于注意力机制的混合深度学习方法,用于患者特异性、跨患者和患者独立的癫痫发作检测 结合1D CNN、MLSTM和多注意力层(MAT)的混合深度学习框架,能够同时提取空间和时间特征,并进行特征融合 方法在临床应用中可能面临新患者数据适应性的挑战 开发一种适用于不同患者群体的自动癫痫发作检测方法 癫痫患者的EEG数据 机器学习 癫痫 EEG信号分析 1D CNN, MLSTM, 多注意力层(MAT) EEG信号数据 CHB-MIT EEG数据集
874 2025-05-12
Multi-dataset Collaborative Learning for Liver Tumor Segmentation
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 提出一种利用外部公开数据集进行MRI肝脏和肿瘤分割的多数据集协作学习方法 采用伪标签、非配对图像到图像转换和自集成学习技术,显著提升了肝脏和肿瘤分割的性能 依赖于外部数据集的可用性,且未明确说明数据集的规模和多样性 提高MRI肝脏和肿瘤自动分割的准确性和鲁棒性 MRI肝脏和肿瘤图像 数字病理 肝癌 伪标签、非配对图像到图像转换、自集成学习 nnU-Net MRI图像 NA
875 2025-05-12
EEG-Based Tension Recognition Annotated with Electrodermal Activity
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
research paper 提出了一种通过整合皮肤电活动(EDA)和脑电图(EEG)数据来精确标注情绪的新方法 利用EDA作为情绪唤醒的心理生理标记,为EEG数据提供高唤醒和低唤醒的精确标注 现有标注方法通常为整个视频分配统一标签,忽略了观看过程中受试者情绪唤醒的变化 提高情绪EEG数据集的标注精确度,增强情绪识别的准确性 情绪EEG数据集 machine learning NA electrodermal activity (EDA), EEG machine learning, deep learning EEG数据 初始训练集中的71.75%数据
876 2025-05-12
Channel Stacking: A Rapid Classification Method for Parkinson's Disease Based on EEG Data
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
research paper 本文介绍了一种名为'通道堆叠'的技术,用于基于脑电图数据准确识别帕金森病 提出'通道堆叠'技术,结合多通道信息为模型准备输入信号,使深度学习架构能高效捕获跨通道信息 NA 开发一种快速分类方法,用于帕金森病的准确识别 帕金森病患者 machine learning 帕金森病 EEG ResNet18 EEG信号 NA
877 2025-05-12
RTA-Former: Reverse Transformer Attention for Polyp Segmentation
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 本文提出了一种名为RTA-Former的新型网络,用于提高息肉分割的边缘准确性 创新性地在解码器中采用了反向注意力机制与Transformer阶段相结合的方法 未提及具体的局限性 提高基于Transformer的息肉分割准确性,以改善临床决策和患者结果 息肉分割 计算机视觉 结直肠癌 深度学习 Transformer, RTA-Former 图像 五个息肉分割数据集
878 2025-05-12
Automated Basilar Artery Lumen Segmentation for High Resolution in Black Blood MRI
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 开发了一种自动图像分割技术,用于在基底动脉的黑血MR血管壁图像中检测管腔和壁边界 利用Detectron2/Mask RCNN深度学习模型实现基底动脉管腔和壁的自动分割,通过迁移学习有效标记薄血管结构 研究数据集较小,仅包含26个MRI扫描 开发自动化图像分割技术以评估基底动脉疾病的管腔形状和壁厚 基底动脉的管腔和壁 数字病理学 脑血管疾病 黑血MR血管壁成像 Detectron2/Mask RCNN MRI图像 26个MRI扫描(20个用于训练,6个用于测试),169个基底动脉横截面图像
879 2025-05-12
Via Multi-attention Guided UNet for Thyroid Nodule Segmentation of Ultrasound Images
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
research paper 提出了一种多注意力引导的UNet(MAUNet)用于甲状腺结节超声图像分割 引入了多尺度交叉注意力(MSCA)模块和双注意力(DA)模块,减少了结节形状和大小对分割结果的影响 未提及具体的数据集大小或多样性限制 提高甲状腺结节超声图像分割的准确性 甲状腺结节超声图像 computer vision thyroid disease deep learning UNet with multi-attention modules ultrasound images 多中心超声图像,来自17家医院
880 2025-05-12
A Method of Cross-Subject Transfer Learning for Ultra Short Time SSVEP Classification
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 提出了一种名为CSA-GSDANN的新方法,用于超短时间SSVEP分类的跨主体迁移学习 结合了全局注意力机制(GAM)和优化的SSVEPNet以及预训练方法CSA,采用领域对抗神经网络(DANN)框架,显著提高了超短时间输入场景下的SSVEP特征提取性能 仅在包含12个受试者的IMUT数据集上进行了评估,样本量相对较小 提高超短时间(小于0.2秒)SSVEP分类的准确性和信息传输率(ITR) 稳态视觉诱发电位(SSVEP)和脑机接口(BCIs) 脑机接口 NA 迁移学习,领域对抗神经网络(DANN) SSVEPNet,约束卷积网络 脑电图(EEG)数据 12名受试者的IMUT数据集
回到顶部