本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9221 | 2024-08-04 |
Artificial intelligence-enhanced electrocardiography analysis as a promising tool for predicting obstructive coronary artery disease in patients with stable angina
2024-Jul, European heart journal. Digital health
DOI:10.1093/ehjdh/ztae038
PMID:39081950
|
研究论文 | 本文探讨了基于人工智能的心电图分析在预测稳定性心绞痛患者阻塞性冠状动脉疾病中的临床可行性 | 使用深度学习框架分析心电图并开发风险评分系统,首次在大样本中验证其有效性 | 本研究未进行多中心外部验证,仅限于已有的数据集 | 评估AI驱动的心电图分析在预测阻塞性冠状动脉疾病中的实用性 | 稳定性心绞痛患者中的心电图数据 | 机器学习 | 心血管疾病 | 深度学习 | NA | 图像 | 50,756张心电图图像,来自21,866名患者,外部验证中4517名患者 | NA | NA | NA | NA |
| 9222 | 2024-08-04 |
Machine learning in cardiac stress test interpretation: a systematic review
2024-Jul, European heart journal. Digital health
DOI:10.1093/ehjdh/ztae027
PMID:39081945
|
综述 | 本文系统回顾了机器学习在心脏压力测试解读中的应用 | 探讨了机器学习应用于心脏压力测试解读的潜力,并展示了相关模型在敏感性和特异性上的改进 | 研究的样本量较小,且排除了核压力测试 | 评估机器学习在冠状动脉疾病压力测试解读中的应用 | 涉及压力心电图和压力超声心动图的机器学习模型 | 机器学习 | 心脏病 | 机器学习,深度学习,自然语言处理 | NA | 数据分析结果 | 七项相关研究的结果 | NA | NA | NA | NA |
| 9223 | 2024-08-04 |
Hypertrophic cardiomyopathy detection with artificial intelligence electrocardiography in international cohorts: an external validation study
2024-Jul, European heart journal. Digital health
DOI:10.1093/ehjdh/ztae029
PMID:39081936
|
研究论文 | 该研究评估了一种基于深度学习的人工智能-心电图算法在国际队列中检测肥厚型心肌病的表现 | 这项研究在多国人群中验证了AI-心电图算法的外部有效性,展示了该算法在临床应用中的潜在价值 | 该研究的前瞻性评估尚未进行,需要进一步验证算法在临床实践中的应用效果 | 评估AI-心电图算法在不同国际人群中检测肥厚型心肌病的表现 | 来自瑞士、英国和韩国的患者,包括773名肥厚型心肌病患者和3867名非肥厚型心肌病对照 | 心血管疾病 | 肥厚型心肌病 | 人工智能心电图 | 卷积神经网络 | 心电图 | 773名肥厚型心肌病患者和3867名非肥厚型心肌病对照 | NA | NA | NA | NA |
| 9224 | 2024-08-04 |
Comparative analysis of deep-learning-based bone age estimation between whole lateral cephalometric and the cervical vertebral region in children
2024-Jul, The Journal of clinical pediatric dentistry
IF:1.5Q2
DOI:10.22514/jocpd.2024.093
PMID:39087230
|
研究论文 | 本研究旨在开发一种基于深度学习的骨龄评估模型,比较全侧面头影测量和颈椎区域在儿童中的应用 | 采用了两种预训练的卷积神经网络进行模型构建,并首次展示了使用颅面骨骼和牙齿进行骨龄评估的可行性 | 本研究为回顾性研究,仅使用了特定医院的数据,可能存在样本选择偏差 | 研究儿童的骨龄评估方法,以便改善对生长儿童的诊断和治疗 | 研究对象为年龄在4到18岁之间的1050名儿童患者 | 数字病理学 | NA | 深度学习,尤其是卷积神经网络 | InceptionResNet-v2 和 NasNet-Large | 影像 | 1050名接受侧面头影测量和手腕放射摄影的儿童 | NA | NA | NA | NA |
| 9225 | 2024-08-04 |
Prospects for artificial intelligence-enhanced electrocardiogram as a unified screening tool for cardiac and non-cardiac conditions: an explorative study in emergency care
2024-Jul, European heart journal. Digital health
DOI:10.1093/ehjdh/ztae039
PMID:39081937
|
研究论文 | 这项研究调查了单一深度学习模型在急诊部门预测心脏和非心脏疾病的能力 | 提出了一种能够处理多种心脏和非心脏诊断的统一筛查工具 | 研究集中于急诊病人,可能不适用于其他场景 | 探索深度学习模型在多种疾病诊断中的应用 | 单一的心电图(ECG)数据 | 机器学习 | 心血管疾病 | 深度学习 | NA | 心电图 | NA | NA | NA | NA | NA |
| 9226 | 2024-08-04 |
Deep learning for discrimination of active and inactive lesions in multiple sclerosis using non-contrast FLAIR MRI: A multicenter study
2024-Jul, Multiple sclerosis and related disorders
IF:2.9Q2
DOI:10.1016/j.msard.2024.105642
PMID:38703520
|
研究论文 | 本研究调查了使用非对比FLAIR型MRI数据,深度学习在区分多发性硬化症中活跃与非活跃病变的能力。 | 提出了一种无创的非对比MRI替代方法,利用深度学习技术区分病变状态。 | 研究主要集中在FLAIR图像上,未考虑其他多种成像方式。 | 旨在准确区分多发性硬化症中的活跃与非活跃病变。 | 研究对象为130名多发性硬化症患者的9097幅病变图像。 | 计算机视觉 | 多发性硬化症 | FLAIR MRI | 卷积神经网络(CNN) | 图像 | 9097幅病变图像,来自130名患者 | NA | NA | NA | NA |
| 9227 | 2024-08-04 |
Label-Free Multiplex Profiling of Exosomal Proteins with a Deep Learning-Driven 3D Surround-Enhancing SERS Platform for Early Cancer Diagnosis
2024-04-30, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c00669
PMID:38624007
|
研究论文 | 本文开发了一种新的三维增强表面增强拉曼光谱平台用于多重监测外泌体蛋白以实现早期癌症诊断 | 提出了一种新型的三维增强SERS平台,结合深度学习技术,能够高灵敏度和高多重性地检测多个外泌体蛋白 | 尚未提及具体的实验限制和临床应用的局限性 | 利用深度学习技术和新型SERS平台,早期诊断肺癌 | 来自患者的血浆外泌体蛋白,包括CD63、CD81、CD9、CD151、CD171、TSPAN8和PD-L1 | 数字病理学 | 肺癌 | SERS | 深度学习 | 蛋白质 | 七种外泌体蛋白质样本 | NA | NA | NA | NA |
| 9228 | 2024-08-04 |
Applications of Data Characteristic AI-Assisted Raman Spectroscopy in Pathological Classification
2024-04-23, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.3c04930
PMID:38602477
|
研究论文 | 本文探讨了基于拉曼光谱的AI辅助病理分类的应用 | 通过构建数据特征辅助的AI分类模型,优化了不同类型拉曼光谱数据的AI分类模型 | 未明确讨论如何处理不同类型的拉曼光谱数据的分类模型优化,相对缺乏对模型选择的指导 | 探索如何优化不同类型拉曼光谱数据的AI分类模型 | 选择了五个具有代表性的拉曼光谱数据集,包括子宫内膜癌、肝癌细胞外囊泡、细菌、黑色素瘤细胞、糖尿病皮肤等 | 数字病理学 | 内膜癌, 肝癌, 黑色素瘤, 细菌感染, 糖尿病皮肤病 | 拉曼光谱 | ResNet, AlexNet, PCA-SVM, SVM, UMAP-SVM | 光谱数据 | 五个数据集,包括不同样本大小和光谱数据大小 | NA | NA | NA | NA |
| 9229 | 2024-08-04 |
Identifying recurrent and persistent landslides using satellite imagery and deep learning: A 30-year analysis of the Himalaya
2024-Apr-20, The Science of the total environment
DOI:10.1016/j.scitotenv.2024.171161
PMID:38387570
|
研究论文 | 本论文介绍了一种基于遥感的方法,能够有效生成多时相滑坡清单并识别反复发生和持续存在的滑坡。 | 该研究开发了首个跨越30年的喜马拉雅地区滑坡多年代清单,利用深度学习模型实现了对滑坡事件的高精度识别。 | 研究仅基于公开的卫星数据,可能受到数据质量和可用性的影响。 | 研究旨在识别和分析喜马拉雅地区的重复和持续滑坡现象。 | 研究对象为1992年至2021年间的滑坡事件和区域。 | 数字路径学 | NA | 卷积神经网络模型 | CNN | 卫星影像 | >265,000 | NA | NA | NA | NA |
| 9230 | 2024-08-04 |
DeepKEGG: a multi-omics data integration framework with biological insights for cancer recurrence prediction and biomarker discovery
2024-Mar-27, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae185
PMID:38678587
|
研究论文 | 提出了一种新的可解释的多组学数据集成方法DeepKEGG,用于癌症复发预测和生物标志物发现 | DeepKEGG结合了生物层次模块和路径自注意力模块,以揭示样本间的潜在关联和提高模型可解释性 | 当前方法在多组学数据集成中尚未充分考虑样本之间的潜在相关性 | 探索多组学数据集成中样本的潜在相关性并提供模型可解释性 | 癌症复发预测和生物标志物的发现 | 数字病理学 | 癌症 | 深度学习 | 多层神经网络 | 多组学数据 | NA | NA | NA | NA | NA |
| 9231 | 2024-08-04 |
PS2MS: A Deep Learning-Based Prediction System for Identifying New Psychoactive Substances Using Mass Spectrometry
2024-03-26, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.3c05019
PMID:38488022
|
研究论文 | 该论文介绍了一种名为PSMS的基于深度学习的预测系统,用于识别新型精神活性物质。 | PSMS通过建立合成的NPS数据库,使用深度学习生成质谱和化学指纹,突破了传统方法的限制。 | 该研究可能在某些情况下面临识别新型毒品的准确性问题,特别是当数据集不够完整时。 | 研究旨在开发一种新系统以有效识别新型精神活性物质。 | 研究对象是新型精神活性物质及其相关衍生物。 | 数字病理学 | NA | 质谱 | 深度学习 | 质谱数据 | 在实际证据样本中识别了一些卡他酮衍生物 | NA | NA | NA | NA |
| 9232 | 2024-08-04 |
Folding-upon-binding pathways of an intrinsically disordered protein from a deep Markov state model
2024-02-06, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2313360121
PMID:38294935
|
研究论文 | 本文研究了一个内在无序蛋白质在与其生理相互作用伙伴结合时的折叠路径 | 采用深度学习的马尔可夫状态建模方法,揭示了折叠与结合的多步诱导适配机制,与传统的典型构象选择路径有所不同 | 未能找到典型的构象选择路径的证据 | 研究内在无序蛋白质的结合机制及其折叠过程 | 麻疹病毒核蛋白N与麻疹病毒磷蛋白复合物的X域的结合 | 计算生物学 | NA | 深度学习, 马尔可夫状态建模 | NA | 分子动态模拟数据 | NA | NA | NA | NA | NA |
| 9233 | 2024-08-04 |
Design and Development of Hypertuned Deep learning Frameworks for Detection and Severity Grading of Brain Tumor using Medical Brain MR images
2024, Current medical imaging
IF:1.1Q3
|
研究论文 | 本文旨在创建基于深度学习的CAD框架,用于脑肿瘤的自动检测和严重程度分级 | 研究工作的新颖之处在于深度学习框架的架构设计,并进行了超参数调整以优化模型性能 | NA | 研究的目的是开发自动检测和分级脑肿瘤的深度学习模型 | 研究对象为脑部MRI图像中的脑肿瘤及其分类 | 计算机视觉 | 脑肿瘤 | 深度学习 | CNN | 医学图像 | 使用BraTs数据集进行测试,包含多个脑肿瘤样本 | NA | NA | NA | NA |
| 9234 | 2024-08-04 |
Clinical Application of Automatic Assessment of Scoliosis Cobb Angle Based on Deep Learning
2024, Current medical imaging
IF:1.1Q3
|
研究论文 | 本文探讨了一种基于深度学习的脊柱侧弯科布角度自动评估模型在临床中的应用价值。 | 该研究首次对深度学习模型进行临床应用验证,并与传统手动测量方法进行了比较。 | 外部验证仍然缺乏,且样本主要来源于开放和私人数据集,可能影响结果的普适性。 | 本研究旨在探索自动评估模型在临床实践中的应用价值。 | 进行了对481个脊柱X光片进行深度学习模型与手动测量方法的比较。 | 数字病理学 | 脊柱侧弯 | 深度学习 | VFLDN和Seg4Reg | 影像 | 481个脊柱X光片作为训练和验证集,119个脊柱X光片作为测试集 | NA | NA | NA | NA |
| 9235 | 2024-08-04 |
Machine learning for high-precision simulation of dissolved organic matter in sewer: Overcoming data restrictions with generative adversarial networks
2024-Oct-15, The Science of the total environment
DOI:10.1016/j.scitotenv.2024.174469
PMID:38972419
|
研究论文 | 本研究建立了一种新框架,结合生成对抗网络和机器学习模型,以提高污水中溶解有机物转化过程的模拟精度 | 提出了一种整合生成对抗网络算法与机器学习模型的框架,以克服数据限制带来的缺陷 | 模型的准确性受到数据限制的限制 | 研究污水中溶解有机物的转化过程及其管理策略 | 污水中的溶解有机物的转化过程 | 机器学习 | NA | 生成对抗网络 | 集成模型 | 虚拟数据集 | 1000个样本 | NA | NA | NA | NA |
| 9236 | 2024-08-04 |
Spatiotemporal changes of urban vacant land and its distribution patterns in shrinking cities on the globe
2024-Oct-15, The Science of the total environment
DOI:10.1016/j.scitotenv.2024.174424
PMID:38969133
|
研究论文 | 研究确定了497个全球收缩城市中的城市空置土地(UVL)及其时空特征 | 使用手动标记和深度学习识别UVL,揭示其分布模式及时空变化 | 仅分析了2016年至2021年间的UVL,可能未涵盖其他时间段的变化 | 识别UVL并分析其在收缩城市中的时空特征 | 497个全球收缩城市的城市空置土地 | 城市规划 | NA | 深度学习 | NA | 地理空间数据 | 497个城市 | NA | NA | NA | NA |
| 9237 | 2024-08-04 |
Integrated machine learning and deep learning for predicting diabetic nephropathy model construction, validation, and interpretability
2024-Aug, Endocrine
IF:3.0Q2
DOI:10.1007/s12020-024-03735-1
PMID:38393509
|
研究论文 | 构建了一种用于辅助诊断糖尿病肾病的风险预测模型 | 结合了机器学习和深度学习算法以构建和验证预测模型 | 未提及具体的样本和疾病的多样性对模型影响的限制 | 探索利用机器学习算法构建糖尿病肾病的风险预测模型 | 糖尿病肾病患者的数据 | 机器学习 | 糖尿病肾病 | 机器学习 | 随机森林 | 数据集 | NA | NA | NA | NA | NA |
| 9238 | 2024-08-05 |
Utilising deep learning networks to classify ZEB2 expression images in cervical cancer
2024-Jul-30, British journal of hospital medicine (London, England : 2005)
DOI:10.12968/hmed.2024.0156
PMID:39078889
|
研究论文 | 本研究提出了一种混合深度学习系统,用于基于ZEB2表达对宫颈癌图像进行分类 | 集成了多种卷积神经网络模型(EfficientNet、DenseNet和InceptionNet)并采用梯度加权类激活映射(Grad-CAM)技术来提高模型决策的可解释性 | 未来的工作将集中在提高模型的准确性以及探索其对其他癌症类型的适用性 | 研究开发一种有效且可解释的深度学习模型,以提高宫颈癌的早期诊断能力 | 宫颈癌图像及其中的ZEB2表达水平 | 计算机视觉 | 宫颈癌 | 深度学习 | 卷积神经网络 | 图像 | 649张注释图像 | NA | NA | NA | NA |
| 9239 | 2024-08-05 |
High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties
2024-Jul-26, RSC advances
IF:3.9Q2
DOI:10.1039/d4ra03233k
PMID:39077321
|
研究论文 | 本文提出了一种结合深度学习模型和高通量筛选的有效方法,以发现性能优异的[5,5]双杂环能量材料 | 创新点在于使用嵌入特征的有向信息传递神经网络建立了高预测准确性的深度学习模型 | 在文中未提及研究的限制 | 研究旨在快速发现具有高能量和优良热稳定性的能量材料 | 研究对象是[5,5]双杂环能量材料及其性能 | 机器学习 | NA | 密度泛函理论计算 (DFT) | 有向信息传递神经网络 | NA | 选出了1种具有良好爆轰性能和热稳定性的材料 | NA | NA | NA | NA |
| 9240 | 2024-08-05 |
Exploring Implicit Biological Heterogeneity in ASD Diagnosis Using a Multi-Head Attention Graph Neural Network
2024-Jul-17, Journal of integrative neuroscience
IF:2.5Q3
DOI:10.31083/j.jin2307135
PMID:39082298
|
研究论文 | 本文提出了一种新型深度学习方法,利用多头注意力图神经网络探索自闭症谱系障碍(ASD)的隐性生物异质性 | 创新点在于采用多头注意力机制建模功能连接图,能够同时模拟与ASD相关的复杂大脑连接模式 | 该研究未提及样本的多样性以外的限制因素 | 研究目的在于提高ASD的诊断准确性和推动神经科学研究 | 研究对象为自闭症患者的脑部成像数据 | 数字病理学 | 自闭症谱系障碍 | 功能连接(FC)图建模 | 图神经网络 | 脑部成像数据 | 使用了来自自闭症脑成像数据交换(ABIDE)I和II的异质性队列数据 | NA | NA | NA | NA |