深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 12056 篇文献,本页显示第 9481 - 9500 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
9481 2024-08-05
[Development of a Deep Learning Model for Judging Late Gadolinium-enhancement in Cardiac MRI]
2024-Jul-20, Nihon Hoshasen Gijutsu Gakkai zasshi
研究论文 本研究验证了深度学习模型在心脏MRI影像中判断晚期钆增强心肌存在与否的有效性 通过卷积神经网络构建的学习模型展示了优异的预测准确性 受限于样本量和单一医院的数据,模型的泛化能力可能有所欠缺 研究深度学习模型在心脏MRI晚期钆增强图像中的应用 使用174张来自东京大学医院的心脏MRI晚期钆增强心肌短轴图像 计算机视觉 心血管疾病 深度学习 卷积神经网络 图像 共涉及174张心脏MRI图像
9482 2024-08-05
A comprehensive survey on deep learning-based identification and predicting the interaction mechanism of long non-coding RNAs
2024-Jul-19, Briefings in functional genomics IF:2.5Q3
综述 本研究综合评述了深度学习在长非编码RNA(lncRNA)识别和交互机制预测中的应用 介绍了深度学习模型的概念,并探讨了多种流行的深度学习算法及其数据偏好 目前许多与lncRNA相关的研究人员缺乏对深度学习模型最新进展的了解 探索深度学习如何在lncRNA的功能研究中被应用 长非编码RNA及其在生物过程中的作用 数字病理学 NA 深度学习 NA 序列数据 NA
9483 2024-08-05
DBPMod: a supervised learning model for computational recognition of DNA-binding proteins in model organisms
2024-Jul-19, Briefings in functional genomics IF:2.5Q3
研究论文 本文介绍了一种计算方法DBPMod,旨在识别物种特异性的DNA结合蛋白。 DBPMod使用了基于机器学习的方法,提高了对物种特异性DNA结合蛋白的识别准确性。 该研究可能在物种特异性预测中仍然存在一定局限性,特别是对于尚未进行充分研究的物种。 研究物种特异性的DNA结合蛋白识别的计算方法。 研究了包括秀丽隐杆线虫、果蝇、大肠杆菌、人类和小鼠在内的五种模式生物。 机器学习 NA 机器学习 浅层学习和深层学习 NA 五种模式生物
9484 2024-08-05
DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification
2024-Jul-19, Briefings in functional genomics IF:2.5Q3
研究论文 本文提出了一种基于深度学习的计算方法DGATCCDA,用于识别circRNA-药物敏感性关联 结合DeepWalk和图注意网络,形成深度Walk感知图注意网络,以有效捕获图结构的全局和局部信息 在生物研究中预测circRNA和药物敏感性关联的方法仍然存在时间消耗和成本高的局限性 开发一种新颖的计算方法以提高预测circRNA与药物敏感性关联的效率和准确性 研究对象为circRNAs和药物之间的关联 计算机视觉 NA 深度学习 深度Walk感知图注意网络 特征信息 在5折交叉验证下测试,样本数量未具体说明
9485 2024-08-05
GAM-MDR: probing miRNA-drug resistance using a graph autoencoder based on random path masking
2024-Jul-19, Briefings in functional genomics IF:2.5Q3
研究论文 本研究提出了GAM-MDR模型,以利用图自编码器和随机路径掩蔽技术预测miRNA-药物抗性 首次将随机路径掩蔽策略与图自编码器相结合用于推断miRNA-药物抗性 模型的效果可能受到数据采集过程中的错误影响 准确预测miRNA-药物抗性以促进miRNA治疗策略的成功 miRNA和药物节点的表示及其在miRNA-药物网络中的关系 数字病理学 NA 图自编码器,随机路径掩蔽 图自编码器 公共数据集 多个公共数据集
9486 2024-08-05
DeepPRMS: advanced deep learning model to predict protein arginine methylation sites
2024-Jul-19, Briefings in functional genomics IF:2.5Q3
研究论文 本研究提出了一种名为DeepPRMS的深度学习模型,用于预测蛋白质的精氨酸甲基化位点 DeepPRMS结合了门控递归单元(GRU)和卷积神经网络(CNN)算法,以提取蛋白质序列中的顺序和空间信息 该研究依赖于独立测试数据集,可能未充分验证在其他数据集上的表现 研究预测蛋白质甲基化位点的方法,以促进相关研究和药物发现 研究对象为蛋白质的初级序列 计算机视觉 NA 深度学习 GRU和CNN 序列数据 基于独立测试数据集进行评估
9487 2024-08-05
A comprehensive review of deep learning-based variant calling methods
2024-Jul-19, Briefings in functional genomics IF:2.5Q3
综述 本文综述了基于深度学习的变异检测方法的最新进展 探讨了深度学习在基因组数据中的应用,尤其是在小变异和结构变异检测方面的创新点 尽管概述了优点,但文中也指出了这些方法的局限性 研究基于深度学习的变异检测技术在个性化医学和诊断中的应用 关注基因组数据中的小变异和结构变异 数字病理 NA 深度学习 NA 基因组数据 NA
9488 2024-08-05
Inferring Cellular Contractile Forces and Work using Deep Morphology Traction Microscopy
2024-Jul-19, Biophysical journal IF:3.2Q2
研究论文 本文介绍了一种名为DeepMorphoTM的新型深度学习的牵引力显微技术,用于测量细胞收缩力。 DeepMorphoTM通过只依赖细胞形状序列推断基底位移,避免了对特殊标记基底的需求,从而简化了实验过程。 尽管DeepMorphoTM提供了更简化的方法,但其对特定细胞形状的生物变异性的稳定性可能仍有待提高。 研究细胞收缩力的测量方法,从而改善对细胞行为调控作用的理解。 研究不同细胞类型及其在多种基底材料上的收缩力。 数字病理学 NA 深度学习 NA 图像 涉及多个细胞类型和基底材料
9489 2024-08-05
The contribution of silencer variants to human diseases
2024-Jul-08, Genome biology IF:10.1Q1
研究论文 本文分析了沉默子变体与人类疾病之间的关联 使用深度学习模型全面剖析了候选沉默子,发现其在与疾病相关变体中的重要性,并提出了新的机制解释 研究仅关注于候选沉默子变体,未涵盖其他调控元件的影响 揭示沉默子变体在各种人类疾病中的作用和机制 约280万候选沉默子和97个人体样本 机器学习 帕金森病、精神分裂症、1型糖尿病 深度学习 NA 基因组数据 97个样本
9490 2024-08-05
Masked cross-domain self-supervised deep learning framework for photoacoustic computed tomography reconstruction
2024-Jul-07, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 该论文介绍了一种掩蔽跨域自监督深度学习框架,用于光声计算机断层成像的重建 提出了一种掩蔽跨域自监督重建策略,克服了有限光声测量缺乏真实标签的问题 实际实施中可能面临成本和性能之间的不可避免的权衡 研究一种新方法以提高光声计算机断层成像的重建质量和效率 聚焦于有限光声测量数据下的图像重建 数字病理学 NA 深度学习 自监督模型 图像 使用了小鼠的体内PACT数据集
9491 2024-08-05
The contribution of silencer variants to human diseases
2024-May-18, medRxiv : the preprint server for health sciences
研究论文 该研究分析了沉默子变异与人类疾病之间的关联 该文章通过深度学习模型对2.8百万候选沉默子进行了全面分析,并发现沉默子变异在某些疾病中的关联性远高于增强子变异 未提及具体的样本多样性和数据来源的局限性 本研究旨在揭示沉默子变异与人类疾病的关系 研究对象是来自多种组织和发育时间点的人类样本 机器学习 帕金森病, 精神分裂症, 疾病1型糖尿病 深度学习 NA 基因组变化数据 97个来自不同组织和发育时间点的人类样本
9492 2024-08-05
Advancements in computer vision and pathology: Unraveling the potential of artificial intelligence for precision diagnosis and beyond
2024, Advances in cancer research
研究论文 该文章探讨了计算机视觉与数字病理学的整合,展示了人工智能在精确诊断中的潜力 文章创新地提出了利用深度学习架构和先进算法改善病理学家诊断能力的方法 文章讨论了人工智能在病理学中的技术、实践和伦理局限性 研究人工智能在数字病理学中实现精准诊断和自动化分析的应用 研究对象为病理图像的数字化分析与诊断过程 计算机视觉 NA 人工智能, 机器学习 CNN, U-Net 图像 NA
9493 2024-08-05
Investigating the effects of artificial intelligence on the personalization of breast cancer management: a systematic study
2024-Jul-18, BMC cancer IF:3.4Q2
研究论文 该文章探讨了人工智能在乳腺癌管理个性化中的应用效果 研究展示了多种深度学习和机器学习方法在乳腺癌管理中的有效性,并揭示了复杂的组学和遗传数据中的潜在模式 未详细说明限制因素 研究人工智能如何与精准肿瘤学结合,优化乳腺癌的个性化治疗 聚焦于使用人工智能模型进行个性化乳腺癌管理的研究 机器学习 乳腺癌 深度学习, 机器学习 NB, SVM, RF, XGBoost, 强化学习 组学数据 共涉及46项研究
9494 2024-08-05
Classification of the quality of canine and feline ventrodorsal and dorsoventral thoracic radiographs through machine learning
2024-Jul, Veterinary radiology & ultrasound : the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association IF:1.3Q2
研究论文 本研究提出了一种基于机器学习的犬猫胸部X光片质量分类模型 采用深度学习和机器学习的方法对胸部X光片的质量进行了分类,分析了裁剪、定位和曝光等方面 未提到模型在真实临床环境中的长期应用效果 提高犬猫胸部X光片的质量控制以改善诊断结果 分析899幅犬猫胸部X光片的质量 机器学习 心血管疾病 深度学习和机器学习 NA 影像 899幅犬猫胸部X光片
9495 2024-08-05
Deep learning-based prediction of one-year mortality in Finland is an accurate but unfair aging marker
2024-Jul, Nature aging IF:17.0Q1
研究论文 本文开发了一个深度学习模型,以预测芬兰的一年死亡率,展示了其准确性和不公平性作为老龄化标记 提出了一种针对短期死亡率的新型老龄化时钟,并评估了其算法公平性 在不同人群中模型性能不均,特别是在劣势群体中面临公平性挑战 研究短期死亡风险作为老龄化标记的预测能力 芬兰全国人口的纵向数据 机器学习 NA 深度学习 深度学习模型 数据 540万
9496 2024-08-05
Atomic-Scale 3D Structure of a Supported Pd Nanoparticle Revealed by Electron Tomography with Convolution Neural Network-Based Image Inpainting
2024-Jul, Small methods IF:10.7Q1
研究论文 该研究利用电子断层成像和深度学习方法分析了支持金属纳米颗粒的三维原子结构 提出了一种基于深度学习的图像修复方法,有效分离并重建了支持的Pd纳米颗粒的三维结构 研究中未提及具体的样本选择标准和实验重复性问题 分析金属纳米颗粒的原子级三维结构并理解其催化性质 支持的Pd纳米颗粒及其与支持材料的界面 数字病理学 NA 电子断层成像,深度学习图像修复 NA 图像 观察到一个11 nm的Pd纳米颗粒
9497 2024-08-05
Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks
2024-Feb-28, Nature communications IF:14.7Q1
研究论文 本文介绍了一种新架构,名为潜在动力学网络,能够揭示潜在非马尔可夫系统中的低维内在动力学 提出了一种轻量级的潜在动力学网络,可以在无需高维空间操作的情况下自动发现低维流形,并在时间外推场景中进行分布的预测 未明确提出研究的特定限制因素 研究复杂空间时间过程在外部刺激下的进化预测 针对潜在的非马尔可夫系统进行探索性研究 机器学习 NA 深度学习算法 潜在动力学网络 低维空间数据 NA
9498 2024-08-05
Feature extraction method of EEG based on wavelet packet reconstruction and deep learning model of VR motion sickness feature classification and prediction
2024, PloS one IF:2.9Q1
研究论文 提出了基于小波包重构的EEG特征提取方法,并利用深度学习模型对虚拟现实运动病特征进行分类和预测 采用增强的GRU网络分析EEG数据,开发了一种高效的深度学习模型,实现了84.9%的运动病分类和预测准确率 尚未提及特定的局限性 研究旨在改善虚拟现实体验和推动虚拟现实技术的发展 研究对象为虚拟现实环境下的用户EEG数据和反馈信息 机器学习 NA EEG GRU NA NA
9499 2024-08-05
A comprehensive overview of recent advances in generative models for antibodies
2024-Dec, Computational and structural biotechnology journal IF:4.4Q2
综述 本文对抗体生成模型的最新进展进行了全面概述 总结了34种具有代表性的抗体生成模型,按其原理和算法将其分为三类,并分析了它们的性能和贡献 未提及具体模型的局限性 旨在提供抗体生成模型的最新发展和选择方法的指导 分析和比较不同类型的抗体生成模型 生物制药 NA 深度学习 序列生成模型、结构生成模型和混合模型 抗体数据 收集了34种最近发布的抗体生成模型
9500 2024-08-05
Which riverine water quality parameters can be predicted by meteorologically-driven deep learning?
2024-Oct-10, The Science of the total environment
研究论文 本研究探讨了气象驱动的深度学习在河流水质参数预测中的应用 研究表明LSTM和GRU模型在预测多种水质参数方面表现优异,尤其是GRU模型在预测每日极值时表现出低误差增量 在预测浊度方面存在预测不足 探讨气象驱动的深度学习对河流水质参数的预测能力 以大黑河流域为研究对象,分析水温、溶解氧、电导率、化学需氧量、氨氮、总磷和总氮等水质参数 机器学习 NA 深度学习 LSTM和GRU 水质数据 NA
回到顶部