本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
961 | 2025-04-06 |
LETA: Tooth Alignment Prediction Based on Dual-branch Latent Encoding
2024-Jun-20, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2024.3413857
PMID:40184274
|
研究论文 | 本文提出了一种基于双分支潜在编码的牙齿对齐预测系统LETA,用于自动预测牙齿的3D姿态变换 | LETA通过从真实对齐牙齿中提取特征来指导网络学习,并采用改进的点卷积操作和基于注意力的网络分别提取局部形状特征和全局上下文特征 | NA | 开发一种自动预测牙齿3D姿态变换的系统,以减少正畸医生的工作量 | 口腔内扫描仪(IOS)获取的牙齿3D网格 | 计算机视觉 | NA | 深度学习 | 双分支潜在编码网络 | 3D点云数据 | 9,868个IOS表面数据 |
962 | 2025-04-06 |
TSRNet: A Dual-Stream Network for Refining 3D Tooth Segmentation
2024-Jun-18, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2024.3413345
PMID:38889041
|
research paper | 提出了一种名为TSRNet的双流网络,用于优化现有3D牙齿分割算法的粗糙分割结果 | 通过双流网络TSRNet结合边界图和距离图的信息,迭代优化粗糙分割的边界 | 未提及具体的数据集规模或计算资源需求 | 改进3D牙齿分割的边界精度 | 3D牙齿分割结果 | computer vision | NA | deep learning | TSRNet (dual-stream network) | 3D image | NA |
963 | 2025-04-06 |
Machine Learning Prediction of Lymph Node Metastasis in Breast Cancer: Performance of a Multi-institutional MRI-based 4D Convolutional Neural Network
2024-05, Radiology. Imaging cancer
DOI:10.1148/rycan.230107
PMID:38607282
|
research paper | 开发了一种基于多机构MRI数据的4D卷积神经网络模型,用于无创预测乳腺癌淋巴结转移 | 提出了一种结合动态图像时间信息的4D CNN模型,整合临床病理指标以提高预测性能 | 研究为回顾性设计,样本量相对有限(350例患者) | 开发深度学习模型预测乳腺癌淋巴结转移状态 | 新诊断的原发性浸润性乳腺癌患者 | digital pathology | breast cancer | dynamic contrast-enhanced (DCE) breast MRI | 4D CNN | MRI图像 | 350例女性患者(平均年龄51.7±11.9岁) |
964 | 2025-04-06 |
Targeted-BEHRT: Deep Learning for Observational Causal Inference on Longitudinal Electronic Health Records
2024-04, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2022.3183864
PMID:35737602
|
研究论文 | 本文提出了一种基于Transformer的深度学习模型T-BEHRT,结合双重稳健估计方法,用于从纵向电子健康记录中进行观察性因果推断 | 开发了T-BEHRT模型,结合双重稳健估计方法,提高了在存在混杂因素情况下的因果推断准确性 | 在数据有限的情况下模型性能可能受到影响 | 研究抗高血压药物类别对癌症发病风险的因果效应 | 电子健康记录(EHRs)数据 | 机器学习 | 心血管疾病 | 双重稳健估计 | Transformer(T-BEHRT) | 电子健康记录 | NA |
965 | 2025-04-06 |
Artificial intelligence-powered pharmacovigilance: A review of machine and deep learning in clinical text-based adverse drug event detection for benchmark datasets
2024-04, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2024.104621
PMID:38447600
|
综述 | 本文综述了机器学习和深度学习方法在临床文本中药物不良事件(ADE)检测中的应用,特别是在命名实体识别(NER)和关系分类(RC)任务中的表现 | 深入比较了机器学习和深度学习在ADE提取中的优缺点,并探讨了BERT模型在端到端任务中的卓越表现 | 研究仅基于有限的文献(12篇文章),且未涵盖所有可能的ADE数据源 | 评估机器学习和深度学习方法在ADE提取中的效果,以提升药物安全监测和医疗结果 | 临床基准数据集中的药物不良事件(ADE) | 自然语言处理 | NA | 机器学习和深度学习 | BERT, 梯度提升, 多层感知机, 随机森林 | 临床文本 | 275篇参考文献中的12篇文章 |
966 | 2025-04-06 |
A Comprehensive Survey on Community Detection With Deep Learning
2024-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2021.3137396
PMID:35263257
|
综述 | 本文全面综述了深度学习在社区检测中的最新进展 | 提出了一种新的分类法,涵盖了基于深度神经网络(DNNs)、深度非负矩阵分解和深度稀疏过滤等最先进方法 | 未提及具体实验结果的局限性 | 综述深度学习技术在社区检测领域的最新进展 | 网络中的社区检测 | 机器学习 | NA | 深度学习 | DNNs, CNN, GAN, 图注意力网络, 自编码器 | 网络数据 | NA |
967 | 2025-04-06 |
Probabilistic Causal Effect Estimation With Global Neural Network Forecasting Models
2024-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2022.3190984
PMID:35853064
|
研究论文 | 提出了一种结合概率预测与深度学习模型的新方法,用于估计干预措施对多个处理单元的因果效应 | 通过估计反事实时间序列概率分布而非单一结果,创新性地解决了传统方法在捕捉政策效应分布变化上的不足 | 未明确说明模型在极端分布情况下的表现及计算复杂度问题 | 开发能够准确量化政策干预对时间序列分布影响的因果推断框架 | 多组受干预和未受干预的时间序列数据 | 机器学习 | NA | 深度学习 | 全局自回归循环神经网络(RNN) | 时间序列数据 | 大量相关时间序列数据集(未提供具体数量) |
968 | 2025-04-06 |
A Comprehensive Framework for Long-Tailed Learning via Pretraining and Normalization
2024-Mar, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2022.3192475
PMID:35895650
|
research paper | 提出了一种通过对比预训练和特征归一化来改进长尾学习特征提取器和分类器的综合框架 | 提出了一种新的平衡对比损失和快速对比初始化方案,以及一种新颖的广义归一化分类器,包括广义归一化和分组可学习缩放 | 未明确提及具体局限性 | 改进长尾识别中的特征提取器和分类器 | 长尾分布数据 | computer vision | NA | 对比预训练, 特征归一化 | NA | image | 多个长尾识别基准数据集 |
969 | 2025-04-06 |
Toward Blind Flare Removal Using Knowledge-Driven Flare-Level Estimator
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2024.3480696
PMID:39437280
|
研究论文 | 本文提出了一种基于知识驱动的盲光斑去除方法,通过光斑级别估计器和调制器来提升网络在训练和测试阶段的适应性 | 提出了一种新的盲光斑去除视角,设计了光斑级别估计器和调制器,以及光斑感知块,用于更准确的光斑识别和重建 | 合成数据与真实数据之间的偏差仍然存在,且光斑的混合机制依赖于多种不确定因素 | 解决盲光斑去除任务中的挑战,提升图像去光斑的效果 | 光斑污染的图像及其无光斑对应图像 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 三个基准数据集和一个新收集的真实世界光斑数据集WiderFlare |
970 | 2025-04-05 |
Preoperative Ultrasound Radomics to Predict Posthepatectomy Liver Failure in Patients With Hepatocellular Carcinoma
2024-Dec, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
IF:2.1Q2
DOI:10.1002/jum.16559
PMID:39177192
|
研究论文 | 该研究开发了一种基于二维剪切波弹性成像和临床数据的深度学习方法,用于预测慢性乙型肝炎相关肝细胞癌患者术后肝功能衰竭的风险 | 提出了结合双模态超声特征和临床指标的深度学习模型PHLF-Net,采用渐进式训练策略,并在多个独立测试集中验证了其有效性 | 研究样本量相对有限(532例患者),且主要针对慢性乙型肝炎相关肝细胞癌患者 | 开发预测肝细胞癌患者术后肝功能衰竭风险的方法 | 接受肝切除术的肝细胞癌患者 | 数字病理学 | 肝细胞癌 | 二维剪切波弹性成像 | ResNet50 | 超声图像(B模式和弹性成像)及临床指标 | 532例肝细胞癌患者(来自5家医院) |
971 | 2025-04-05 |
RiceSNP-ABST: a deep learning approach to identify abiotic stress-associated single nucleotide polymorphisms in rice
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae702
PMID:39757606
|
研究论文 | 提出了一种名为RiceSNP-ABST的深度学习模型,用于识别水稻中与非生物胁迫相关的单核苷酸多态性(SNPs) | 开发了一种新的负样本构建策略,提出了四种基于DNA序列片段的特征编码方法,并采用带有残差连接的卷积神经网络进行预测 | 高质量的水稻非生物胁迫相关数据稀缺,可能影响模型的泛化能力 | 开发预测模型以识别水稻中与非生物胁迫相关的SNPs,助力水稻抗性品种的培育 | 水稻中的单核苷酸多态性(SNPs) | 机器学习 | NA | 全基因组关联研究(GWAS) | CNN | DNA序列 | NA |
972 | 2025-04-05 |
GPS-pPLM: A Language Model for Prediction of Prokaryotic Phosphorylation Sites
2024-11-08, Cells
IF:5.1Q2
DOI:10.3390/cells13221854
PMID:39594603
|
research paper | 介绍了一个名为GPS-pPLM的在线服务器,用于预测原核生物中的磷酸化位点 | 结合了transformer和深度神经网络两种深度学习方法,整合了10种序列特征和上下文特征,构建了针对特定磷酸化残基类型和物种的预测模型 | NA | 预测原核生物中的磷酸化位点 | 原核生物中的磷酸化位点 | natural language processing | NA | transformer, deep neural network | transformer, DNN | protein sequences | 44,839个非冗余磷酸化位点,来自16,041个蛋白质和95种原核生物 |
973 | 2025-04-05 |
Dynamic modulation of social gaze by sex and familiarity in marmoset dyads
2024-Nov-05, bioRxiv : the preprint server for biology
DOI:10.1101/2024.02.16.580693
PMID:38405818
|
research paper | 开发了一种新框架,用于准确追踪自由活动的普通狨猴的面部特征和三维头部注视方向,研究了性别和熟悉度对狨猴互动社交注视行为的影响 | 结合深度学习计算机视觉工具和三角测量算法,实现了对自由活动狨猴面部特征和头部注视方向的准确追踪,克服了传统实验中头部运动受限的问题 | 研究仅针对狨猴这一特定物种,结果可能无法直接推广到其他灵长类动物 | 研究社交因素(性别和熟悉度)如何影响灵长类动物的注视行为 | 自由活动的普通狨猴 | computer vision | NA | 深度学习计算机视觉工具和三角测量算法 | deep learning-based computer vision tools | video | 狨猴成对组合(具体数量未明确说明) |
974 | 2025-04-05 |
An All-in-One Array of Pressure Sensors and sEMG Electrodes for Scoliosis Monitoring
2024-11, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202404136
PMID:39115097
|
研究论文 | 开发了一种集成压力传感器和表面肌电电极的一体化阵列,用于脊柱侧弯监测 | 利用分层MXene/壳聚糖/聚二甲基硅氧烷(PDMS)/聚氨酯海绵和MXene/聚酰亚胺(PI)材料开发了一体化传感器阵列,具有高灵敏度和稳定性,并能通过深度学习预测Cobb角 | 未提及长期临床验证结果或大规模患者测试数据 | 改进脊柱侧弯治疗中支具效果的实时监测方法 | 脊柱侧弯患者 | 生物医学工程 | 脊柱侧弯 | MXene复合材料技术、深度学习 | 深度学习模型(未指定具体类型) | 压力数据、肌电信号 | 未明确说明样本数量 |
975 | 2025-04-05 |
Deep learning of echocardiography distinguishes between presence and absence of late gadolinium enhancement on cardiac magnetic resonance in patients with hypertrophic cardiomyopathy
2024-Oct-14, Echo research and practice
IF:3.2Q2
DOI:10.1186/s44156-024-00059-8
PMID:39396969
|
研究论文 | 本研究利用深度学习技术分析超声心动图,以区分肥厚型心肌病患者心脏磁共振中晚期钆增强的存在与否 | 结合临床参数和深度学习分析的超声心动图图像,开发了一种优于仅基于临床参数的模型的新方法 | 样本量相对较小(323例),且研究为横断面设计,未进行长期预后评估 | 区分肥厚型心肌病患者心脏磁共振中晚期钆增强的阳性与阴性 | 肥厚型心肌病患者 | 数字病理学 | 心血管疾病 | 心脏磁共振(CMR)和超声心动图 | 深度卷积神经网络(DCNN) | 图像 | 323例肥厚型心肌病患者(训练集273例,测试集50例) |
976 | 2025-04-05 |
Artificial Intelligence Applications in Oral Cancer and Oral Dysplasia
2024-Oct, Tissue engineering. Part A
DOI:10.1089/ten.TEA.2024.0096
PMID:39041628
|
综述 | 本文综述了人工智能在口腔癌和口腔上皮异型增生中的应用,旨在开发预测性生物标志物 | 利用人工智能方法开发预测口腔上皮异型增生转化为口腔鳞状细胞癌的生物标志物,以及预测口腔鳞状细胞癌死亡率和治疗反应的生物标志物 | 目前尚无可靠的临床、病理、组织学或分子生物标志物来确定口腔上皮异型增生患者的个体风险 | 提高对口腔鳞状细胞癌和口腔上皮异型增生的预测能力,以改善患者生存率 | 口腔鳞状细胞癌(OSCC)和口腔上皮异型增生(OED)患者 | 数字病理学 | 口腔癌 | 多重免疫组织化学、深度学习、表观基因组学 | 深度学习(DL) | 图像、表观遗传数据 | NA |
977 | 2025-04-05 |
Artificial Intelligence in Metabolomics: A Current Review
2024-Sep, Trends in analytical chemistry : TRAC
DOI:10.1016/j.trac.2024.117852
PMID:39071116
|
综述 | 本文综述了人工智能在代谢组学中的方法与应用,探讨了其在系统生物学和人类健康中的潜力 | 总结了人工智能在代谢组学分析中的多种应用,包括分析检测、数据预处理、生物标志物发现、预测建模和多组学数据整合 | 尽管存在局限性和挑战,但代谢组学与人工智能的结合在提升人类健康方面具有革命性进展的潜力 | 探讨人工智能在代谢组学研究中的方法和应用 | 代谢组学数据及其在系统生物学和人类健康中的应用 | 代谢组学 | NA | 机器学习和深度学习 | NA | 代谢组学数据 | NA |
978 | 2025-04-05 |
Hybrid-supervised deep learning for domain transfer 3D protoacoustic image reconstruction
2024-Apr-03, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad3327
PMID:38471184
|
research paper | 本研究开发了一种混合监督深度学习方法,用于解决质子声学成像中的有限视角问题,并实现高质量的3D剂量验证 | 提出了一种Recon-Enhance两阶段深度学习方法,结合了transformer网络和3D U-net,采用混合监督训练策略 | 研究仅在前列腺癌患者数据上进行验证,未在其他癌症类型中测试 | 解决质子声学成像中的有限视角问题,提高3D剂量验证的准确性和效率 | 质子声学成像的3D重建和剂量验证 | digital pathology | prostate cancer | protoacoustic imaging | transformer-based network, 3D U-net | acoustic signals, image | 126例前列腺癌患者数据 |
979 | 2025-04-05 |
Global research evolution and frontier analysis of artificial intelligence in brain injury: A bibliometric analysis
2024-04, Brain research bulletin
IF:3.5Q2
|
研究论文 | 本文通过文献计量可视化分析,探讨了人工智能在脑损伤领域的全球研究演变和前沿分析 | 利用VOSviewer和CiteSpace对1998至2023年的3000篇文献进行可视化分析,揭示了该领域的研究热点和发展趋势 | 研究机构间缺乏合作与交流,且核心研究机构主要集中在发达国家 | 识别人工智能在脑损伤领域的研究热点,明确研究资源 | Web of Science核心数据库中1998至2023年引用的3000篇文章 | 人工智能 | 脑损伤 | 文献计量分析 | 专家系统、机器学习、深度学习 | 文献数据 | 3000篇文章 |
980 | 2025-04-04 |
Multicenter investigation of preoperative distinction between primary central nervous system lymphomas and glioblastomas through interpretable artificial intelligence models
2024-Nov, Neuroradiology
IF:2.4Q2
DOI:10.1007/s00234-024-03451-7
PMID:39225815
|
research paper | 本研究通过可解释的人工智能模型,基于MRI图像对原发性中枢神经系统淋巴瘤(PCNSL)和胶质母细胞瘤(GBM)进行术前区分 | 结合了放射组学模型和深度学习模型,提出了最优的Max-Fusion模型,并利用SHAP和Grad-CAM进行可解释性分析 | 研究为回顾性分析,样本量相对有限(261例患者),且仅来自两个医疗中心 | 探索基于MRI的深度学习和放射组学模型在术前区分PCNSL和GBM中的有效性和适用性 | 261例PCNSL和GBM患者的MRI图像和临床数据 | digital pathology | brain tumor | MRI | MobileVIT, ConvNeXt, Max-Fusion Model | image | 261例患者(训练集153例,外部测试集108例) |