深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 12030 篇文献,本页显示第 961 - 980 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
961 2025-10-06
PPML-Omics: A privacy-preserving federated machine learning method protects patients' privacy in omic data
2024-02-02, Science advances IF:11.7Q1
研究论文 提出一种保护隐私的联邦机器学习方法PPML-Omics,用于组学数据分析中的患者隐私保护 设计了去中心化差分隐私联邦学习算法,首次提供数学理论证明的隐私保护方法 NA 解决组学数据分析中的患者隐私泄露问题 组学数据中的患者隐私信息 机器学习 NA 测序技术 深度学习模型 组学数据 NA NA NA 隐私保护能力,效用平衡 NA
962 2025-10-06
Body Composition, Coronary Microvascular Dysfunction, and Future Risk of Cardiovascular Events Including Heart Failure
2024-02, JACC. Cardiovascular imaging
研究论文 本研究通过深度学习分析身体成分,探讨冠状动脉微血管功能障碍与骨骼肌、脂肪组织的关联及其对心血管事件风险的预测价值 首次使用深度学习模型量化身体成分,揭示骨骼肌减少(而非脂肪增加)与冠状动脉微血管功能障碍及心血管事件的独立关联 样本量有限(n=400),研究对象为转诊患者可能存在选择偏倚,随访时间中位数为6年 探究身体成分与冠状动脉微血管功能障碍的关系及其对心血管预后的影响 400例冠状动脉疾病评估患者,71%为女性,50%为非白人,50%肥胖 数字病理 心血管疾病 心脏负荷正电子发射断层扫描,腹部计算机断层扫描 深度学习 医学影像 400例连续患者 NA NA 风险比,置信区间,P值 NA
963 2025-10-06
An automatic parathyroid recognition and segmentation model based on deep learning of near-infrared autofluorescence imaging
2024-02, Cancer medicine IF:2.9Q2
研究论文 基于深度学习开发用于近红外自发荧光成像的甲状旁腺自动识别与分割模型 首次将深度学习应用于近红外自发荧光成像的甲状旁腺自动识别与分割 召回率相对较低(57.8%),需要进一步优化模型性能 建立AI模型帮助外科医生在手术中更好地识别和保护甲状旁腺 甲状旁腺 计算机视觉 甲状旁腺疾病 近红外自发荧光成像(NIFI) 深度学习 图像 523张NIFI图像 NA NA 精确率,召回率,识别率 NA
964 2025-10-06
Abdominal Body Composition Reference Ranges and Association With Chronic Conditions in an Age- and Sex-Stratified Representative Sample of a Geographically Defined American Population
2024-04-01, The journals of gerontology. Series A, Biological sciences and medical sciences
研究论文 本研究通过腹部CT扫描建立了美国特定地理区域人群的身体成分参考范围,并分析了其与慢性疾病的关联 首次在具有地理代表性的普通人群中建立了基于CT的身体成分参考范围,并系统分析了年龄、性别和慢性疾病对身体成分的影响 研究仅限于美国明尼苏达州南部和威斯康星州西部27个县的居民,可能不适用于其他人群 建立基于CT的身体成分参考范围并分析其与慢性疾病的关联 4,900名20-89岁接受腹部CT检查的居民 医学影像分析 慢性疾病 计算机断层扫描(CT) 深度学习 医学影像 4,649名具有地理代表性的居民 NA NA NA NA
965 2025-10-06
Application of ChatGPT in Routine Diagnostic Pathology: Promises, Pitfalls, and Potential Future Directions
2024-Jan-01, Advances in anatomic pathology IF:5.1Q1
文献综述 本文综述了ChatGPT在常规诊断病理学中的应用前景、潜在问题和未来发展方向 首次系统探讨大型语言模型在病理学诊断领域的应用潜力,并通过模拟实际病理诊断场景进行对话测试 目前关于ChatGPT在病理学领域的研究信息有限,需要更多研究验证其准确性、有效性和伦理问题 评估ChatGPT在常规诊断病理学中的应用价值和局限性 ChatGPT及其他聊天机器人技术在病理诊断中的应用 自然语言处理 NA 自然语言处理,深度学习 大型语言模型 文本数据 NA NA Transformer NA NA
966 2025-06-16
Silicon integrated photonic-electronic neuron for noise-resilient deep learning
2024-Sep-23, Optics express IF:3.2Q2
research paper 本文展示了一种光电混合乘积累加神经元(PEMAN)架构的光子段实验演示,采用硅光子芯片和高速电吸收调制器进行矩阵向量乘法 引入了一种新颖的激活函数斜率拉伸策略以减轻噪声影响,并展示了噪声感知深度学习技术的应用 实验验证仅限于特定噪声水平和计算速率下的性能评估 开发噪声鲁棒性强的深度学习架构,用于健康监测 光电混合神经元架构及其在心跳声音分类中的应用 machine learning cardiovascular disease silicon photonic chip, electro-absorption modulators three-layer neural network sound 1350 trainable parameters NA NA NA NA
967 2025-06-16
Ultra-fast and accurate force spectrum prediction and inverse design of light-driven microstructure by deep learning
2024-Sep-23, Optics express IF:3.2Q2
研究论文 利用深度学习预测和逆向设计光驱动微结构的光谱力和结构配置 使用深度神经网络(DNNs)替代传统计算方法,实现超快速且高精度的力谱预测和微结构逆向设计 研究仅针对由5×5方阵组成的微结构,未涉及更复杂或不同排列的结构 获得在不同频率光照射下能产生预定义力的微结构配置 由5×5方阵组成的微结构,每个位置为空或由介电球体占据 机器学习 NA Mie散射-麦克斯韦应力张量方法 DNNs, 生成网络 模拟数据 NA NA NA NA NA
968 2025-06-16
Hyper-NLOS: hyperspectral passive non-line-of-sight imaging
2024-Sep-23, Optics express IF:3.2Q2
research paper 提出了一种基于高光谱融合的非视距成像技术HFN-Net,通过利用多光谱的高维特征和空间-光谱注意力机制,提升了图像的颜色保真度和结构细节 首次将高光谱特征和空间-光谱注意力机制引入非视距成像,解决了传统方法因稀疏和同质投影特征导致的图像重建不适定问题 未明确提及具体局限性,但可能受限于高光谱数据的获取和处理复杂度 提升被动非视距成像技术的性能,解决传统方法在图像重建中的不足 非视距成像技术及其在自动驾驶和搜救等领域的应用 computer vision NA hyperspectral imaging, deep learning HFN-Net (hyperspectral full-color auto-encoder with spatial-spectral attention) hyperspectral image 未明确提及具体样本数量,但开发了HS-NLOS数据集用于训练和评估 NA NA NA NA
969 2025-06-16
Deep learning optimization for small object classification in lensfree holographic microscopy
2024-Sep-23, Optics express IF:3.2Q2
研究论文 本文探讨了在无透镜全息显微镜中应用浅层卷积神经网络进行小物体分类的性能优化 首次系统地研究了不同网络层和超参数对无透镜全息显微镜中小物体分类性能的影响,并发现激活层的选择对提高准确性最为关键 网络准确率约为83%,仍有提升空间,且研究仅针对特定类型的全息传感器 优化无透镜全息显微镜中的小物体分类性能 生物分子功能化的微米和纳米珠子 计算机视觉 NA 无透镜全息显微镜 CNN 图像 NA NA NA NA NA
970 2025-06-16
Intelligent classification of water bodies with different turbidity levels based on Gaofen-1 multispectral imagery
2024-Sep-23, Optics express IF:3.2Q2
研究论文 本文提出并验证了一种基于深度学习的智能浊度分类方法,用于高分辨率多光谱遥感影像中不同浊度水体的分类 提出自适应阈值水体提取方法以减少近岸水体提取误差,引入半自动语义标注方法降低人工标注成本,并采用模式滤波处理边缘噪声问题 NA 开发高效的大规模遥感水体浊度监测方法 不同浊度等级的水体 遥感图像处理 NA 深度学习 DeepLab V3+ 多光谱遥感影像 NA NA NA NA NA
971 2025-06-16
Image segmentation of phase-modulated holographic data storage based on deep learning
2024-Sep-23, Optics express IF:3.2Q2
研究论文 本文提出了一种基于深度学习的相位调制全息数据存储图像分割方法 通过基于图像特征的分割方法,显著减少了训练深度学习网络所需的原始样本对数量,降低了约54倍 未提及具体实验验证的样本规模或实际应用中的性能表现 提高相位调制全息数据存储的解码效率和准确性 相位调制全息数据存储中的衍射强度图像 计算机视觉 NA 深度学习 DL 图像 未明确提及具体样本数量 NA NA NA NA
972 2025-06-16
Deep learning based measurement accuracy improvement of high dynamic range objects in fringe projection profilometry
2024-Sep-23, Optics express IF:3.2Q2
research paper 本文提出了一种基于深度学习的方法,用于提高条纹投影轮廓术中高动态范围物体的测量精度 使用改进的UNet深度神经网络建立“多对一”映射关系,并采用π移位二进制条纹以获取更多饱和条纹信息,从而快速准确地解调高动态范围物体的相位 未明确提及具体局限性 解决高动态范围物体在条纹投影轮廓术中的相位解调问题,提高三维测量精度 高动态范围物体 computer vision NA 条纹投影轮廓术(FPP) 改进的UNet 图像 NA NA NA NA NA
973 2025-10-06
Association of retinal image-based, deep learning cardiac BioAge with telomere length and cardiovascular biomarkers
2024-Jul-01, Optometry and vision science : official publication of the American Academy of Optometry IF:1.6Q3
研究论文 本研究开发了一种基于视网膜图像的深度学习心脏生物年龄模型,用于评估心血管疾病风险并与端粒长度关联 首次将视网膜图像与深度学习相结合,开发非侵入性心脏生物年龄评估模型,并与端粒长度建立关联 横断面研究设计无法确定因果关系,研究人群仅限于UK Biobank参与者 验证深度学习心脏生物年龄模型与传统心血管疾病风险标志物及端粒长度的一致性 UK Biobank中具有白细胞端粒长度数据的个体 数字病理学 心血管疾病 深度学习 深度学习模型 视网膜图像 UK Biobank中具有端粒长度数据的参与者群体 NA NA 相关系数, r平方值, p值 NA
974 2025-10-06
A Deep Learning Application of Capsule Endoscopic Gastric Structure Recognition Based on a Transformer Model
2024-Oct-01, Journal of clinical gastroenterology IF:2.8Q2
研究论文 基于Transformer模型开发用于胶囊内镜胃结构识别的深度学习应用 首次将Transformer模型应用于胶囊内镜胃结构识别,通过自注意力机制提升胃肠道图像识别性能 数据来源于单一医院(南方医院),样本时间跨度较长(2011-2021年) 建立胶囊内镜胃结构识别模型,提升深度学习在内镜图像识别中的临床应用价值 胶囊内镜视频中的15种上消化道结构 计算机视觉 胃部病变 胶囊内镜 Transformer 视频 3343个无线胶囊内镜视频用于无监督预训练,2433个用于训练,118个用于验证 NA Transformer 准确率, 灵敏度, 特异性, 阳性预测值, 阴性预测值 NA
975 2025-06-15
Discrete Representation Learning for Multivariate Time Series
2024-Aug, Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)
research paper 本文提出了一种基于高斯过程的多元时间序列离散表示学习方法 使用Gumbel-softmax重参数化技巧解决离散潜在变量在深度学习模型中的不可微问题,实现联合聚类和嵌入 NA 开发多元时间序列的离散表示学习方法以提高可解释性 多元时间序列数据 machine learning NA Gumbel-softmax reparameterization Gaussian processes multivariate time series 合成数据和真实fMRI数据 NA NA NA NA
976 2025-06-15
A practical machine learning approach for predicting the quality of 3D (bio)printed scaffolds
2024-Jul-25, Biofabrication IF:8.2Q1
research paper 本研究提出了一种实用的机器学习方法,用于预测3D(生物)打印支架的质量 提供了最全面的开源数据集,并应用了从无监督到监督学习的多种AI技术,开发了一个具有六层隐藏层的全连接神经网络 AI在组织工程中的应用常因缺乏全面可靠的数据而受到阻碍 预测3D(生物)打印支架的质量 3D(生物)打印支架 machine learning NA AI, machine learning, deep learning XGBoost, Gradient Boosting, Extra Trees Classifier, Random Forest Classifier, LightGBM, fully connected neural network dataset on 3D-printed scaffolds 1171 scaffolds, 60 biomaterials, 49 cell lines NA NA NA NA
977 2025-06-15
A hybrid model for the detection of retinal disorders using artificial intelligence techniques
2024-Jul-10, Biomedical physics & engineering express IF:1.3Q3
research paper 该研究提出了一种结合机器学习和深度学习技术的混合模型,用于自动分类视网膜疾病 提出了一种新的框架,结合了多种分类器(SVM、K-NN、DT、EM)和InceptionV3 CNN特征提取器,实现了高精度的视网膜疾病分类 未提及模型在临床环境中的实际应用效果或泛化能力 开发一种自动化的视网膜疾病分类方法 视网膜疾病(脉络膜新生血管、糖尿病性黄斑水肿、玻璃膜疣)和正常病例 computer vision 视网膜疾病 OCT(光学相干断层扫描) SVM、K-NN、DT、EM、InceptionV3 CNN image 18000张OCT图像 NA NA NA NA
978 2025-06-15
Explainable AI based automated segmentation and multi-stage classification of gastroesophageal reflux using machine learning techniques
2024-06-28, Biomedical physics & engineering express IF:1.3Q3
研究论文 本文提出了一种基于可解释AI的自动化分割和多阶段分类方法,用于诊断胃食管反流病(GERD) 开发了一个针对胃肠道疾病诊断的系统,结合了Yolov5目标检测、DeepLabV3+分割和多种机器学习分类器进行多阶段分类 NA 通过计算机辅助技术快速准确地诊断胃食管反流病(GERD) 胃食管反流病(GERD)患者的内窥镜图像 数字病理学 胃食管反流病 视频内窥镜 Yolov5, DeepLabV3+, SVM, 自定义深度神经网络 图像 NA NA NA NA NA
979 2025-06-15
An extensive analysis of artificial intelligence and segmentation methods transforming cancer recognition in medical imaging
2024-06-18, Biomedical physics & engineering express IF:1.3Q3
综述 本文全面分析了人工智能和分割方法在医学影像中癌症识别的应用 重点评估了卷积神经网络(CNNs)在医学图像分割和分类中的自学习和决策能力 现有图像分割方法在应用于某些特定类型图像时存在局限性 探讨图像分割技术在医学影像中癌症识别的重要性和应用 医学影像中的癌症区域 计算机视觉 癌症 计算机辅助诊断(CAD)系统 CNN 医学影像 NA NA NA NA NA
980 2025-06-15
Optimizing motor imagery BCI models with hard trials removal and model refinement
2024-06-04, Biomedical physics & engineering express IF:1.3Q3
研究论文 本文提出两种新方法来识别和减轻困难试验对运动想象脑机接口模型性能的影响 提出基于模型预测分数和可解释人工智能(XAI)的定量方法来识别困难试验,并通过移除这些试验来优化模型性能 实验仅在Open BMI数据集上进行,未在其他数据集上验证方法的普适性 优化运动想象脑机接口(BCI)模型的分类性能 运动想象BCI系统中的困难试验 机器学习 NA 定量可解释人工智能(XAI) 深度CNN 脑电图(EEG)数据 Open BMI数据集中的样本 NA NA NA NA
回到顶部