本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10401 | 2024-08-05 |
Contrastive pre-training for sequence based genomics models
2024-Jun-12, bioRxiv : the preprint server for biology
DOI:10.1101/2024.06.10.598319
PMID:38915667
|
研究论文 | 本文介绍了一种用于序列基础基因组模型的无监督对比预训练方法cGen | cGen是一种模型无关的对比预训练方法,能够在训练前初始化权重,从而减少所需数据集的大小 | 对比预训练方法的有效性可能受到原始基因组数据的质量影响 | 探索深度学习在基因组学中的应用,尤其是在数据稀缺情况下的模型性能提升 | 研究序列基础的深度学习模型在基因组学中的应用 | 机器学习 | NA | NA | NA | 序列数据 | NA |
10402 | 2024-08-05 |
Deep learning-based multi-modal data integration enhancing breast cancer disease-free survival prediction
2024-Jun, Precision clinical medicine
IF:5.1Q1
DOI:10.1093/pcmedi/pbae012
PMID:38912415
|
研究论文 | 本研究开发了一个新的多模态深度学习模型,使用术前数据预测乳腺癌的无病生存期。 | 创新点在于将临床病理数据与分子数据整合到DeepClinMed-PGM模型中,以提高预测乳腺癌无病生存期的准确性。 | 研究的回顾性设计可能影响模型的广泛适用性和外部验证。 | 研究旨在开发一个乳腺癌无病生存期的预测模型。 | 参与者包括训练队列741人,内部验证队列184人,外部测试队列95人。 | 机器学习 | 乳腺癌 | 深度学习 | DeepClinMed-PGM | 影像、分子和临床数据 | 训练队列741人,内部验证队列184人,外部测试队列95人 |
10403 | 2024-08-05 |
Image detection model construction of Apolygus lucorum and Empoasca spp. based on improved YOLOv5
2024-Jun, Pest management science
IF:3.8Q1
DOI:10.1002/ps.7964
PMID:38243837
|
研究论文 | 本研究提出了一种基于改进YOLOv5的深度学习模型用于自动检测和计数小害虫Apolygus lucorum和Empoasca spp. | 提出了新的YOLOv5s_HSSE模型,通过改变激活函数、引入SIoU损失函数和增加注意力机制实现更高的检测精度 | 关于模型在不同环境或其他作物上的适用性未进行详细探讨 | 开发一种高效、准确的小害虫监测方法 | 针对Apolygus lucorum和Empoasca spp.的小害虫进行检测和计数 | 计算机视觉 | NA | 深度学习 | YOLOv5s_HSSE | 图像 | 1502张从多个地点和时间收集的图像 |
10404 | 2024-08-05 |
Deep Learning Based on Computed Tomography Predicts Response to Chemoimmunotherapy in Lung Squamous Cell Carcinoma
2024-May-17, Aging and disease
IF:7.0Q1
DOI:10.14336/AD.2024.0169
PMID:38916736
|
研究论文 | 本研究旨在开发深度学习模型以预测肺鳞状细胞癌患者对化疗免疫治疗的主要病理反应。 | 该研究开发的ResNet50模型显示出高预测准确性,揭示了与免疫反应和抗原处理及呈递相关的生物机制。 | 目前研究的样本来自不同医疗机构,可能存在样本异质性。 | 研究目的是确定对化疗免疫治疗的响应的可靠生物标志物。 | 参与者为309名来自各医疗机构的肺鳞状细胞癌患者。 | 数字病理学 | 肺癌 | 对比增强计算机断层扫描 | ResNet50 | 图像 | 309名肺鳞状细胞癌患者 |
10405 | 2024-08-05 |
Optimizing deep learning-based segmentation of densely packed cells using cell surface markers
2024-May-15, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-024-02502-6
PMID:38750526
|
研究论文 | 本文研究了基于深度学习的细胞分割模型在密集细胞中的优化方法 | 通过比较18种深度学习细胞分割模型,并细化训练,提升了细胞分割的准确性 | 最终模型表现的不足可以归因于图像集中的中等信噪比 | 提高人类单细胞特征在高度密集组织中的识别和量化能力 | 使用人类单纯疱疹病毒感染的皮肤组织免疫细胞表面标记的免疫荧光图像 | 计算机视觉 | NA | 深度学习 | Cellpose的cyto模型 | 图像 | 超过10,000个训练实例 |
10406 | 2024-08-05 |
Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning
2024-May-13, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00189
PMID:38687957
|
研究论文 | 本文探讨了L2 β-内酰胺酶的共进化动力学及其在抗微生物耐药性中的重要性 | 采用创新的计算方法,包括自适应采样分子动力学模拟和深度学习方法,探讨L2 β-内酰胺酶家族的构象变化和相关性 | 对L2 β-内酰胺酶的研究相对有限,可能影响对其全面理解 | 理解L2 β-内酰胺酶的共进化动力学 | L2 β-内酰胺酶及其他代表性A类酶 | 计算机视觉 | NA | 深度学习 | 卷积变分自编码器和BindSiteS-CNN | NA | NA |
10407 | 2024-08-05 |
Evaluating the Efficacy and Accuracy of AI-Assisted Diagnostic Techniques in Endometrial Carcinoma: A Systematic Review
2024-May, Cureus
DOI:10.7759/cureus.60973
PMID:38910646
|
综述 | 本研究系统评估了人工智能辅助的内膜癌诊断技术的有效性和准确性 | 研究表明人工智能模型,特别是卷积神经网络在内膜癌诊断中具有卓越的精确性 | 研究专注于过去十年的文献,可能未能涵盖最新的研究进展 | 探索人工智能和机器学习在内膜癌诊断中的作用 | 针对内膜癌诊断中人工智能/机器学习的应用研究 | 计算机视觉 | 内膜癌 | 深度学习 | 卷积神经网络 | 文献 | 涉及的文献为经过同行评审的研究,样本数量不具体 |
10408 | 2024-08-05 |
Application of Artificial Intelligence in Neuroendocrine Lung Cancer Diagnosis and Treatment: A Systematic Review
2024-May, Cureus
DOI:10.7759/cureus.61012
PMID:38910787
|
综述 | 本文综述了人工智能在神经内分泌肺癌诊断中的应用. | 探讨了AI技术在提高神经内分泌肿瘤诊断准确性方面的创新点. | 传统的诊断方法仍然存在主观解释和临床表现重叠的问题. | 旨在提供AI在神经内分泌肺癌诊断中的应用全面概述. | 研究对象为神经内分泌肿瘤及其诊断方法. | 人工智能 | 肺癌 | 机器学习和深度学习算法 | NA | 放射学图像, 组织病理样本和临床数据 | 大型数据集 |
10409 | 2024-08-05 |
Synthesizing 4D Magnetic Resonance Angiography From 3D Time-of-Flight Using Deep Learning: A Feasibility Study
2024-May, Cureus
DOI:10.7759/cureus.60803
PMID:38910733
|
研究论文 | 本研究旨在开发一种深度卷积神经网络模型,能够从3D飞行时间磁共振血管成像生成合成的4D磁共振血管成像 | 该文章创新性地利用深度学习模型从静态的TOF信号中提取潜在的动态动脉流信息 | 样本量较小,仅包含13名受试者,可能影响模型的普适性 | 旨在通过训练机器学习模型扩展TOF磁共振血管成像的应用 | 训练模型的对象为13名没有脑血管阻塞或显著狭窄病史的受试者 | 数字病理学 | 脑血管疾病 | 3D飞行时间磁共振成像和4D动脉自旋标记成像 | 深度卷积神经网络(DCNN) | 图像 | 13名受试者(11名男性和2名女性,年龄42-77岁) |
10410 | 2024-08-05 |
The Success of Deep Learning Modalities in Evaluating Modic Changes
2024-04, World neurosurgery
IF:1.9Q2
DOI:10.1016/j.wneu.2024.01.129
PMID:38296043
|
研究论文 | 本研究分析了使用深度学习模式检测的MRI中Modic变化。 | 该文章创新性地应用了多种卷积神经网络(CNN)架构来分类和分割Modic变化,有助于降低放射科医师的工作量。 | NA | 调查深度学习在MRI中评估Modic变化的有效性。 | 307名接受MRI检查的患者,涵盖不同年龄段的男女。 | 计算机视觉 | NA | MRI | CNN | 图像 | 307名患者的MRI图像数据 |
10411 | 2024-08-05 |
Automatic gross tumor volume segmentation with failure detection for safe implementation in locally advanced cervical cancer
2024-Apr, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2024.100578
PMID:38912007
|
研究论文 | 本文比较了深度学习模型在局部晚期宫颈癌中的肿瘤体积分割效果,并引入了故障检测的新方法 | 通过利用放射组学特征引入了故障检测的创新方法 | 未提及研究中潜在的限制 | 研究自动化分割方法在局部晚期宫颈癌放射治疗中的应用 | 局部晚期宫颈癌患者的肿瘤体积分割 | 数字病理学 | 宫颈癌 | 深度学习 | 2D-SegResNet等 | 医学影像 | 115名回顾性案例和51名前瞻性案例 |
10412 | 2024-08-05 |
Current Status and Role of Artificial Intelligence in Anorectal Diseases and Pelvic Floor Disorders
2024 Apr-Jun, JSLS : Journal of the Society of Laparoendoscopic Surgeons
DOI:10.4293/JSLS.2024.00007
PMID:38910957
|
综述 | 本文概述了人工智能在处理良性肛肠疾病和盆底疾病管理中的当前应用状态。 | 文章展示了使用卷积神经网络等AI模块优化影像研究和肛门测压解读的创新点。 | 所开发的AI模块未在外部队列中进行验证。 | 探讨人工智能在改善盆底和良性肛肠疾病管理中的潜力。 | 分析与盆底疾病及良性肛肠疾病相关的文献,评估AI在这些领域的应用。 | 计算机视觉 | NA | 卷积神经网络 | NA | 文献 | 139篇文献中,符合纳入与排除标准的有15篇 |
10413 | 2024-08-05 |
A novel method of swin transformer with time-frequency characteristics for ECG-based arrhythmia detection
2024, Frontiers in cardiovascular medicine
IF:2.8Q2
DOI:10.3389/fcvm.2024.1401143
PMID:38911517
|
研究论文 | 本研究提出了一种结合小波时频图与Swin Transformer模型的新方法,用于ECG基础的心律失常检测 | 该方法创新地结合了小波时频图与Swin Transformer模型,提高了心律失常检测的准确性 | 研究中没有提及样本的多样性和适用性限制 | 研究旨在提高心律失常的自动检测准确性 | 研究对象为MIT-BIH心律失常数据集中的心电图(ECG)信号 | 机器学习 | 心血管疾病 | 小波变换 | Swin Transformer | 心电图信号 | MIT-BIH心律失常数据集中的样本 |
10414 | 2024-08-05 |
Automated Scoring of Alzheimer's Disease Atrophy Scale with Subtype Classification Using Deep Learning-Based T1-Weighted Magnetic Resonance Image Segmentation
2024, Journal of Alzheimer's disease reports
DOI:10.3233/ADR-230105
PMID:38910943
|
研究论文 | 该文章提供了一种基于深度学习的自动化阿尔茨海默病萎缩评分方法 | 通过深度学习分割方法实现客观的体积驱动萎缩评分,为阿尔茨海默病亚型分类提供了新的自动化工具 | 在认知正常参与者中的评分一致性较差,可能影响临床应用 | 研究阿尔茨海默病的萎缩评分及其亚型分类 | 研究对象包括3959名参与者,其中有认知正常、轻度认知障碍和阿尔茨海默病患者 | 数字病理学 | 阿尔茨海默病 | 深度学习图像分割 | NA | MRI图像 | 3959名参与者(1732名认知正常,1594名轻度认知障碍,633名阿尔茨海默病患者) |
10415 | 2024-08-05 |
Comparative Evaluation of Machine Learning Models for Subtyping Triple-Negative Breast Cancer: A Deep Learning-Based Multi-Omics Data Integration Approach
2024, Journal of Cancer
IF:3.3Q2
DOI:10.7150/jca.93215
PMID:38911381
|
研究论文 | 本研究开发了一种基于深度学习的多组学数据整合模型,以提高三阴性乳腺癌亚型和预后预测的准确性 | 本研究在数据整合、统计性能和算法优化方面展示了显著进展,特别是在深度学习模型的优化方面 | 尽管MRI放射组学模型有效,但在跨数据集应用时的性能下降强调了需要进一步优化以提高准确性和一致性 | 研究目的在于提高三阴性乳腺癌的分类和预后预测准确性 | 研究对象为三阴性乳腺癌相关的多组学分子特征数据,包括mRNA、miRNA、基因突变、DNA甲基化和MRI图像 | 数字病理学 | 乳腺癌 | 深度学习 | DL模型 | 图像和基因组数据 | NA |
10416 | 2024-08-05 |
GranoScan: an AI-powered mobile app for in-field identification of biotic threats of wheat
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1298791
PMID:38911980
|
研究论文 | 本文介绍了一款名为GranoScan的免费移动应用程序,可实时检测和识别地中海地区影响小麦的80多种威胁 | GranoScan通过与意大利农民的直接合作开发,具有优化的图形界面和在低或无网络情况下的操作能力 | 没有提到关于特定环境条件下应用程序的限制或潜在挑战 | 旨在提供一种可用的工具以帮助农民识别小麦的生物威胁 | 研究对象为影响小麦的生物威胁,包括害虫和病害 | 计算机视觉 | 肺癌 | 深度学习 | EfficientNet-b0 | 图像 | 未具体说明样本的数量和种类 |
10417 | 2024-08-05 |
Automated measurement and grading of knee cartilage thickness: a deep learning-based approach
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1337993
PMID:38487024
|
研究论文 | 本研究提出了一种基于深度学习的方法来自动测量和分级膝盖软骨厚度 | 通过不同的深度学习方法实现膝盖软骨的分割和测量,建立了一套标准化的软骨厚度数据库 | 研究主要是回顾性分析,可能存在选择偏差,且样本范围在年龄和分级上有限 | 旨在提高膝盖软骨厚度测量的效率和准确性 | 混合膝盖MRI数据集和不同参数下的软骨厚度 | 数字病理学 | 骨关节炎 | 深度学习 | 卷积神经网络(CNN) | 影像 | 700个膝盖MRI案例 |
10418 | 2024-08-05 |
Deep Learning Based Prediction of Pulmonary Hypertension in Newborns Using Echocardiograms
2024, International journal of computer vision
IF:11.6Q1
DOI:10.1007/s11263-024-01996-x
PMID:38911323
|
研究论文 | 本研究提出了一种基于多视角视频的深度学习方法,用于预测和分类新生儿的肺动脉高压。 | 这是首个利用超声心动图进行新生儿肺动脉高压自动评估的研究,采用了解释性深度学习方法。 | 本研究的结果基于相对小的样本量,未来需要在更大人群中验证。 | 本研究旨在开发一种自动化工具,以改善新生儿肺动脉高压的检测和严重性分类。 | 研究对象为270名新生儿,使用超声心动图进行肺动脉高压的预测和评估。 | 数字病理学 | 心脏病 | 超声心动图(Echocardiogram) | 时空卷积网络(Spatio-temporal convolutional architectures) | 视频 | 270名新生儿 |
10419 | 2024-08-05 |
Improved 3D DESS MR neurography of the lumbosacral plexus with deep learning and geometric image combination reconstruction
2024-Aug, Skeletal radiology
IF:1.9Q3
DOI:10.1007/s00256-024-04613-7
PMID:38386108
|
研究论文 | 本研究评估了深度学习重建对LSP MRN影像质量和神经可见性的影响 | 提出了一种几何图像组合方法,以改善DESS信号的组合 | 仅评估了成人患者的影像,样本量相对较小 | 探讨深度学习重建及几何图像组合对LSP MRN的影像质量提升 | 涉及40名接受3.0特斯拉LSP MRN的成人患者 | 数字病理学 | NA | 深度学习重建,几何图像组合 | NA | 影像 | 40名患者(22名女性,平均年龄48.6岁) |
10420 | 2024-08-05 |
Computed tomography machine learning classifier correlates with mortality in interstitial lung disease
2024-Jul, Respiratory investigation
IF:2.4Q2
DOI:10.1016/j.resinv.2024.05.010
PMID:38772191
|
研究论文 | 本研究探讨了机器学习分类器Fibresolve在间质性肺病中的死亡率预测能力。 | Fibresolve作为一种基于深度学习的非侵入性诊断工具,首次被验证为间质性肺病死亡率的独立预测因子。 | 此研究的样本量虽然大,但仅包括228名可随访数据的患者,可能限制了结果的广泛适用性。 | 研究Fibresolve在间质性肺病患者中预测死亡率的有效性。 | 研究对象为228名患有特发性肺纤维化及其他间质性肺病的患者。 | 计算机视觉 | 间质性肺病 | 深度学习 | Cox回归分析 | 医学影像 | 228名患者 |