本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 11021 | 2024-08-05 |
Shortening Acquisition Time and Improving Image Quality for Pelvic MRI Using Deep Learning Reconstruction for Diffusion-Weighted Imaging at 1.5 T
2024-03, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.06.035
PMID:37500416
|
研究论文 | 本研究探讨使用深度学习重建技术对1.5T下骨盆扩散加权成像的采集时间和图像质量的影响 | 创新地应用深度学习技术来缩短扩散加权成像的采集时间并提高图像质量 | 研究仅限于单一中心,样本量相对较小且为回顾性研究 | 研究骨盆MRI的扩散加权成像中,深度学习重建对采集时间和图像质量的影响 | 55名患者接受了标准扩散加权成像和深度学习重建的扩散加权成像 | 数字病理学 | NA | 深度学习重建 | NA | 图像 | 55名患者(年龄范围27至89岁) | NA | NA | NA | NA |
| 11022 | 2024-08-05 |
Automated identification and quantification of metastatic brain tumors and perilesional edema based on a deep learning neural network
2024-Jan, Journal of neuro-oncology
IF:3.2Q2
DOI:10.1007/s11060-023-04540-y
PMID:38133789
|
研究论文 | 本论文展示了一种用于自动分割转移性脑肿瘤及相关周边水肿的深度学习模型 | 该研究采用仅仅使用T1加权对比增强影像和T2加权影像训练深度学习模型,从而实现自动分割和定量分析 | 研究中使用的数据集相对较小,仅包含90组MRI影像,可能影响模型的泛化能力 | 研究旨在通过深度学习技术提高转移性脑肿瘤和周边水肿的分割效率 | 研究对象为46名患者的转移性脑肿瘤与周边水肿影像数据 | 计算机视觉 | 脑肿瘤 | 深度学习 | DeepMedic 3D卷积神经网络 | 影像 | 90组MRI影像,来自46名患者 | NA | NA | NA | NA |
| 11023 | 2024-08-05 |
Evaluation of mediastinal lymph node segmentation of heterogeneous CT data with full and weak supervision
2024-01, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 本文评估了异质CT数据中纵隔淋巴结分割的完整监督和弱监督方法的性能 | 提出了在异质数据集中比较完全监督与弱监督分割模型的方法 | 未提到具体的生物标志物或临床应用的长时间跟踪数据 | 研究淋巴结分割模型的泛化能力和不同疾病条件与成像参数的影响 | 使用完全独立于模型创建数据集的806个纵隔淋巴结 | 计算机视觉 | NA | 完全卷积神经网络(FCNs) | NA | 图像 | 540名独特患者的806个纵隔淋巴结样本 | NA | NA | NA | NA |
| 11024 | 2024-08-05 |
Deep Transfer Learning for Ethnically Distinct Populations: Prediction of Refractive Error Using Optical Coherence Tomography
2024-Jan, Ophthalmology and therapy
IF:2.6Q2
DOI:10.1007/s40123-023-00842-6
PMID:37955835
|
研究论文 | 本文提出了一种深度迁移学习模型,以预测不同种族人群的未矫正屈光不正 | 针对多种族情况下训练和测试数据分布不匹配造成的模型性能下降,提出了一种适应性训练的深度迁移学习模型 | 需要进一步的研究以确认所提出算法的可行性,特别是需较大的样本量和多样的数据来源 | 研究目的在于通过适应性训练和迁移学习来改善屈光不正的预测 | 研究对象包括来自不同种族的眼科病人及其光学相干断层扫描图像 | 数字病理学 | NA | 光学相干断层扫描(OCT) | 深度学习模型 | 图像 | 2602只眼睛的1301名患者(预训练),60只眼睛的30名患者(适应性训练),142只眼睛的71名患者(测试) | NA | NA | NA | NA |
| 11025 | 2024-08-05 |
Vascular Age Assessed From an Uncalibrated, Noninvasive Pressure Waveform by Using a Deep Learning Approach: The AI-VascularAge Model
2024-Jan, Hypertension (Dallas, Tex. : 1979)
|
研究论文 | 本文介绍了一种使用深度学习方法评估血管年龄的模型,称为AI-VascularAge。 | 该文章创新性地使用了卷积神经网络从非侵入性的血压波形中提取信息,以预测血管年龄,这是评估心血管疾病风险的新方法。 | 研究样本主要来自社区人群,可能不具备广泛的适用性,并且模型的特异性和敏感性仍需进一步验证。 | 本研究的目的是通过使用深度学习的方法评估血管年龄,并探讨其与心血管疾病的关系。 | 研究对象包括来自冰岛的社区样本和Framingham心脏研究的参与者,共涉及多个血压波形。 | 机器学习 | 心血管疾病 | 卷积神经网络(CNN) | 卷积神经网络 | 波形数据 | 10680个参与者,31126个波形(冰岛样本)和7208个参与者,21624个波形(Framingham心脏研究) | NA | NA | NA | NA |
| 11026 | 2024-08-05 |
A Siamese deep learning framework for efficient hardware Trojan detection using power side-channel data
2024-Jun-06, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-62744-2
PMID:38844523
|
研究论文 | 本文提出了一种新颖的Siamese神经网络框架来检测硬件特洛伊木马 | 采用了非侵入性的电源侧信道信号处理,且不需要IC的黄金模型 | 研究中没有提到实际应用中的复杂环境或其他类型的攻击 | 提高集成电路安全性,检测隐藏的硬件特洛伊木马 | 使用从Trojan Power & EM Side-Channel数据集中提取的特征进行训练 | 计算机视觉 | NA | 电源侧信道信号处理 | SNN, LSTM, GRU, CNN | 信号数据 | 使用Trojan Power & EM Side-Channel数据集的样本 | NA | NA | NA | NA |
| 11027 | 2024-08-05 |
Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning
2024-Jun-06, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-024-02564-6
PMID:38844961
|
研究论文 | 本研究提出了一种新的方法CDA-DGRL,用于预测circRNA-疾病关联 | 该方法通过图网络和双线表示模型整合图节点特征,实现了对局部和全局图网络结构的有效捕捉,解决了现有模型在稀疏局部结构信息利用上的局限性 | 该研究可能受到现有生物数据稀疏性的限制,尽管提出了方法来缓解这一问题 | 本研究旨在可靠地识别circRNA-疾病关联,以减少传统生物实验的需求 | 该研究的对象是circRNA和疾病之间的关联 | 数字病理学 | NA | 深度学习框架,图神经网络 | 图卷积神经网络 | 生物信息数据 | 通过对circR2Disease数据集进行五折交叉验证获得结果 | NA | NA | NA | NA |
| 11028 | 2024-08-07 |
Author Correction: Opportunistic detection of type 2 diabetes using deep learning from frontal chest radiographs
2024-Jun-06, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-49184-2
PMID:38844459
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 11029 | 2024-08-05 |
Choroidalyzer: An Open-Source, End-to-End Pipeline for Choroidal Analysis in Optical Coherence Tomography
2024-Jun-03, Investigative ophthalmology & visual science
IF:5.0Q1
DOI:10.1167/iovs.65.6.6
PMID:38833259
|
研究论文 | 本文开发了一个开源的全自动管道Choroidalyzer,用于光学相干层析中的脉络膜分析 | Choroidalyzer通过自动化方法提高了脉络膜、血管和中心凹分割的准确性,是一种客观和标准化的分析工具 | 本文未涉及不同成像设备和系统疾病对结果的潜在影响 | 本研究的目的是开发一个脉络膜分析的开源管道 | 本文的研究对象包括233名受试者,涉及6个系统性疾病队列 | 数字病理学 | NA | OCT | U-Net | 图像 | 5600个OCT B扫描 | NA | NA | NA | NA |
| 11030 | 2024-08-05 |
Automatic detection of brain tumors with the aid of ensemble deep learning architectures and class activation map indicators by employing magnetic resonance images
2024-May, Zeitschrift fur medizinische Physik
IF:2.4Q2
DOI:10.1016/j.zemedi.2022.11.010
PMID:36593139
|
研究论文 | 本研究旨在通过集成深度学习架构和类激活图指标自动检测脑肿瘤 | 使用集成深度学习架构(ResNet50, VGG19, InceptionV3和MobileNet)和类激活图(CAMs)作为辅助工具进行脑肿瘤诊断 | 暂未提及研究的局限性 | 实现脑肿瘤的自动检测,提高早期诊断的准确性 | 使用MRI图像检测不同类型的脑肿瘤 | 计算机视觉 | 脑癌 | MRI | ResNet50, VGG19, InceptionV3, MobileNet | 图像 | 未提及 | NA | NA | NA | NA |
| 11031 | 2024-08-05 |
Predicting disease-related MRI patterns of multiple sclerosis through GAN-based image editing
2024-May, Zeitschrift fur medizinische Physik
IF:2.4Q2
DOI:10.1016/j.zemedi.2023.12.001
PMID:38143166
|
研究论文 | 本研究应用 StyleGAN 模型探索与多发性硬化症相关的模式并预测MRI中的疾病进展 | 使用StyleGAN模型在潜在空间中模拟多发性硬化症的进展,展示了深度学习在医学影像中的潜力 | 没有提到具体的局限性 | 研究多发性硬化症的MRI图像模式及其进展预测 | 多发性硬化症患者和健康对照者的T1加权GRE MRI图像和基于扩散的ADC图 | 计算机视觉 | 多发性硬化症 | 深度学习 | StyleGAN | 图像 | 使用多发性硬化症患者和健康对照者的MRI样本 | NA | NA | NA | NA |
| 11032 | 2024-08-05 |
Artificial intelligence-based analysis of whole-body bone scintigraphy: The quest for the optimal deep learning algorithm and comparison with human observer performance
2024-May, Zeitschrift fur medizinische Physik
IF:2.4Q2
DOI:10.1016/j.zemedi.2023.01.008
PMID:36932023
|
研究论文 | 本研究开发了深度学习模型,以自动化分析全身骨显像扫描并与人类观察者的表现进行比较 | 提出了使用深度学习模型自动化分类正常和异常扫描以及区分恶性与非肿瘤性骨病 | AI模型在第二项分析中的性能与人类观察者相当,需更多数据来验证 | 研究旨在提高对全身骨显像扫描的解读效率和准确性 | 研究对象包括7188名患者中的3772名和2248名参与者 | 计算机视觉 | 恶性骨病 | 深度学习 | CNN | 医学图像 | 3772名患者用于第一项分析,2248名患者用于第二项分析 | NA | NA | NA | NA |
| 11033 | 2024-08-05 |
Towards MR contrast independent synthetic CT generation
2024-May, Zeitschrift fur medizinische Physik
IF:2.4Q2
DOI:10.1016/j.zemedi.2023.07.001
PMID:37537099
|
研究论文 | 本文提出了一种合成CT生成方法,以提高其对不同 MRI 对比度的通用性 | 引入了一种预训练的深度学习模型,用于生成人工质子密度、T1和T2图,从而提升合成CT的生成质量 | 该方法主要在T2w MR图像数据集上验证,其普适性和适应性在其他类型图像上的表现可能有限 | 改善合成CT模型的通用性,使其在不同对比度的MR图像上表现更加稳定 | 研究对象为T2w MR图像以及其他对比度的MR图像 | 数字病理学 | NA | 深度学习 | NA | MR图像 | 使用了仅有的T2w MR图像数据集进行研究 | NA | NA | NA | NA |
| 11034 | 2024-08-05 |
Automatic AI-based contouring of prostate MRI for online adaptive radiotherapy
2024-May, Zeitschrift fur medizinische Physik
IF:2.4Q2
DOI:10.1016/j.zemedi.2023.05.001
PMID:37263911
|
研究论文 | 本研究针对MR引导放疗中的在线适应性方案,提出了一种基于AI的自动轮廓生成方法。 | 提出了一种快速、准确的深度学习模型用于自动化MRI分割,以适应临床MR引导放疗工作流程。 | 样本数量较小,仅46名患者,可能限制了结果的普遍适用性。 | 旨在训练并验证一种用于在线MR引导放疗的自动轮廓生成模型。 | 研究对象包括47名接受MRI检查的前列腺肿瘤患者。 | 数字病理学 | 前列腺癌 | MRI | 深度学习模型 | 图像 | 47名患者的232例T2w MRI数据集 | NA | NA | NA | NA |
| 11035 | 2024-08-05 |
Deep learning-based affine medical image registration for multimodal minimal-invasive image-guided interventions - A comparative study on generalizability
2024-May, Zeitschrift fur medizinische Physik
IF:2.4Q2
DOI:10.1016/j.zemedi.2023.05.003
PMID:37355435
|
研究论文 | 本研究实现了20种神经网络用于医疗图像的仿射配准,并评估了其性能和对新数据集的通用性 | 提出了多种神经网络在医疗图像配准中的应用,特别关注其对新数据集的通用性 | 该研究只使用了两个特定的数据集,可能不代表所有医疗图像类型 | 研究医疗图像配准技术的通用性和性能 | 主要研究对象为三维CT和MR图像的仿射配准 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 两个数据集:一个合成数据集和一个真实患者数据集 | NA | NA | NA | NA |
| 11036 | 2024-08-05 |
The use of deep learning in interventional radiotherapy (brachytherapy): A review with a focus on open source and open data
2024-May, Zeitschrift fur medizinische Physik
IF:2.4Q2
DOI:10.1016/j.zemedi.2022.10.005
PMID:36376203
|
review | 本文回顾了深度学习在介入放射治疗(近距离放射治疗)中的应用,重点分析了开源和开放数据。 | 探讨了深度学习在介入放射治疗各个过程中的作用,并分析了开源代码和数据的可用性。 | 开源代码、数据和模型的发布意愿不足,限制了结果可重复性,同时评估仅限于单一机构的数据集。 | 研究深度学习在介入放射治疗中的应用和发展。 | 介入放射治疗过程及相关领域的深度学习应用。 | 医学影像 | NA | 深度学习 | NA | 开放数据 | NA | NA | NA | NA | NA |
| 11037 | 2024-08-05 |
Automated prognosis of renal function decline in ADPKD patients using deep learning
2024-May, Zeitschrift fur medizinische Physik
IF:2.4Q2
DOI:10.1016/j.zemedi.2023.08.001
PMID:37612178
|
研究论文 | 本研究开发了基于深度学习的方法来自动预测ADPKD患者的肾功能下降。 | 提出了结合自动生成的肾脏MRI图像特征与传统生物标志物的新方法,采用卷积神经网络(CNN)和多层感知器(MLP)进行预测。 | 研究主要基于样本量为135的患者,可能限制了结果的广泛适用性。 | 探索如何通过深度学习提高ADPKD患者肾功能下降的预后准确性。 | 涉及多人群,即135名ADPKD患者,通过分析其肾脏影像和生物标志物来进行研究。 | 计算机视觉 | 肾脏疾病 | 深度学习 | 卷积神经网络(CNN)和多层感知器(MLP) | 影像 | 135名ADPKD患者 | NA | NA | NA | NA |
| 11038 | 2024-08-05 |
PSMA-PET improves deep learning-based automated CT kidney segmentation
2024-May, Zeitschrift fur medizinische Physik
IF:2.4Q2
DOI:10.1016/j.zemedi.2023.08.006
PMID:37666698
|
研究论文 | 本文探讨了结合PSMA-PET数据在自动化CT肾脏分割中的应用 | 提出将PSMA-PET数据整合到现有的CT基础自动分割方法中,提升肾脏分割的准确性 | 未提及具体的样本大小及应用场景的限制 | 研究PSMA-PET数据对CT肾脏分割的价值 | 肾脏的自动化分割 | 数字病理学 | NA | 深度学习 | NA | CT图像, PSMA-PET数据 | NA | NA | NA | NA | NA |
| 11039 | 2024-08-05 |
Feature-guided deep learning reduces signal loss and increases lesion CNR in diffusion-weighted imaging of the liver
2024-May, Zeitschrift fur medizinische Physik
IF:2.4Q2
DOI:10.1016/j.zemedi.2023.07.005
PMID:37543450
|
研究论文 | 本研究旨在开发一种特征引导的深度学习方法,以提高肝脏扩散加权成像的图像质量 | 提出了一种通过优化特征而非“黄金标准”目标图像来训练U-Net的深度学习方法 | 不同放射科医师的整体质量评分存在差异 | 提高肝脏扩散加权成像的图像质量,尤其是降低脉动引起的信号损失 | 使用来自40名肝脏病变患者的数据进行研究 | 数字病理学 | 肝病 | 扩散加权成像 | U-Net | 影像 | 40名肝脏病变患者 | NA | NA | NA | NA |
| 11040 | 2024-08-05 |
Deep learning algorithm (YOLOv7) for automated renal mass detection on contrast-enhanced MRI: a 2D and 2.5D evaluation of results
2024-04, Abdominal radiology (New York)
DOI:10.1007/s00261-023-04172-w
PMID:38368481
|
研究论文 | 本研究探讨了深度学习算法YOLOv7在对比增强MRI上检测肾肿瘤的应用 | 本研究首次使用YOLOv7进行肾肿瘤的自动检测,并引入了一种新开发的2.5维评估方法 | 研究中使用的方法和结果可能需要在更大和更多样化的样本上验证 | 自动化检测与分类肾肿瘤以提高诊断和治疗的准确性 | 326名接受MRI检查的肾细胞癌患者及其1034个肿瘤样本 | 计算机视觉 | 肾癌 | 对比增强MRI | YOLOv7 | 图像 | 326名患者及1034个肿瘤 | NA | NA | NA | NA |