本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 11161 | 2024-08-05 |
Hybrid CNN-LSTM for Predicting Diabetes: A Review
2024, Current diabetes reviews
IF:2.4Q3
|
综述 | 本文章回顾了基于CNN-LSTM的糖尿病预测研究。 | 提出了CNN和LSTM结合的方法用于糖尿病的预测,并与其他深度学习方法进行了比较。 | 该模型在训练大量数据集和生物因素方面面临挑战。 | 探讨CNN-LSTM模型在糖尿病早期检测中的应用。 | 对糖尿病预测的相关研究进行回顾和分析。 | 机器学习 | 糖尿病 | 深度学习 | CNN-LSTM | NA | NA | NA | NA | NA | NA |
| 11162 | 2024-08-05 |
Radiomics-based machine learning and deep learning to predict serosal involvement in gallbladder cancer
2024-01, Abdominal radiology (New York)
DOI:10.1007/s00261-023-04029-2
PMID:37787963
|
研究论文 | 本研究旨在确定基于对比增强计算机断层扫描的放射组学模型在预测胆囊癌患者浆膜侵犯方面的能力。 | 本研究创新地使用了放射组学特征和深度学习模型来提高胆囊癌浆膜侵犯的预测准确性。 | 研究样本仅限于152名胆囊癌患者,可能影响模型的推广性。 | 研究的目的是提高对胆囊癌浆膜侵犯的预测能力。 | 研究对象为152名确诊的胆囊癌患者。 | 数字病理学 | 胆囊癌 | 对比增强计算机断层扫描 | 全连通神经网络(f-CNN) | 图像 | 152名胆囊癌患者 | NA | NA | NA | NA |
| 11163 | 2024-08-05 |
Implications of ultrasound-based deep learning model for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and intrahepatic cholangiocarcinoma
2024-01, Abdominal radiology (New York)
DOI:10.1007/s00261-023-04089-4
PMID:37999743
|
研究论文 | 本研究开发了一种基于超声波的深度学习模型,用于术前区分肝细胞癌、肝内胆管癌和混合肝细胞胆管癌 | 提出了一种新型的深度学习模型,专注于超声影像中较难区分的肝癌类型 | 研究对象主要限于初级肝癌患者,可能无法推广到其他类型的肝癌或患者群体 | 旨在利用超声技术与深度学习改善肝癌的术前诊断 | 研究对象为465名初级肝癌患者的超声图像 | 医学影像学 | 肝癌 | 深度学习 | Resnet18, MobileNet, DenseNet121, Inception V3 | 影像 | 465名患者的超声B型图像 | NA | NA | NA | NA |
| 11164 | 2024-08-05 |
Microstrip isoelectric focusing with deep learning for simultaneous screening of diabetes, anemia, and thalassemia
2024-Jul-11, Analytica chimica acta
IF:5.7Q1
DOI:10.1016/j.aca.2024.342696
PMID:38834281
|
研究论文 | 本文提出了一种基于微带等电聚焦和深度学习的方法用于同时筛查糖尿病、贫血和地中海贫血 | 首次实现了Hb的绝对定量检测、Hb种类的相对定量及多种疾病的同时筛查 | 基于Hb种类的疾病诊断准确率较低,仅为69.33% | 提高糖尿病、贫血和地中海贫血的筛查准确性 | 检测 Hb 的相对含量及其相关疾病的筛查 | 数字病理学 | 糖尿病、贫血、地中海贫血 | 微带等电聚焦 (mIEF) | ResNet1D | 图像 | NA | NA | NA | NA | NA |
| 11165 | 2024-08-05 |
Crowdsourcing image segmentation for deep learning: integrated platform for citizen science, paid microtask, and gamification
2024-Jun-25, Biomedizinische Technik. Biomedical engineering
DOI:10.1515/bmt-2023-0148
PMID:38143326
|
研究论文 | 本文开发了一种集成群众外包的平台,以比较不同的医学图像分割方法 | 提出了结合公民科学、付费微任务和游戏化的集成众包平台 | 样本数量较少,仅有50幅图像参与训练 | 比较不同类型的众包方法在医学图像分割中的效果 | 医学图像(眼底图像中的巩膜分割) | 数字病理学 | NA | 深度学习,卷积神经网络 | NA | 图像 | 50幅图像 | NA | NA | NA | NA |
| 11166 | 2024-08-05 |
E2SCNet: Efficient Multiobjective Evolutionary Automatic Search for Remote Sensing Image Scene Classification Network Architecture
2024-Jun, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2022.3220699
PMID:36395135
|
研究论文 | 提出了一种高效的多目标进化自动搜索框架E2SCNet,用于遥感图像场景分类网络架构 | E2SCNet采用了八种轻量级操作符,构建了多样化的搜索空间,实现了参数数量与准确度的两步进化搜索机制 | 进化神经架构搜索方法通常需要几天时间 | 解决遥感图像场景分类中传统网络架构的固定性和不足之处 | 遥感图像场景分类深度学习网络架构 | 计算机视觉 | NA | 多目标进化计算 | NA | NA | 通过与多种人类专家设计的网络及基于梯度和进化计算的搜索方法获得的网络进行比较 | NA | NA | NA | NA |
| 11167 | 2024-08-05 |
Automated marine oil spill detection algorithm based on single-image generative adversarial network and YOLO-v8 under small samples
2024-Jun, Marine pollution bulletin
IF:5.3Q1
DOI:10.1016/j.marpolbul.2024.116475
PMID:38761680
|
研究论文 | 本文介绍了一种针对小样本的海洋油污检测算法,结合了SinGAN和YOLO-v8模型 | 创新之处在于使用单幅图像生成对抗网络(SinGAN)扩展小样本数据集,并结合YOLO-v8进行油污检测 | 研究的主要局限在于依赖于从Landsat-8卫星获得的小样本数据集,可能影响检测模型的泛化能力 | 本研究旨在提升海洋油污检测的准确性和实时性,特别是在样本稀缺的情况下 | 研究对象为海洋油污检测数据集,主要包括通过Landsat-8卫星拍摄的油污图像 | 计算机视觉 | NA | 生成对抗网络(SinGAN), YOLO-v8 | YOLO-v8 | 图像 | 小样本数据集 | NA | NA | NA | NA |
| 11168 | 2024-08-05 |
Fourier Domain Robust Denoising Decomposition and Adaptive Patch MRI Reconstruction
2024-Jun, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2022.3222394
PMID:37015441
|
研究论文 | 本文提出了一种傅里叶域稳健去噪分解和自适应补丁MRI重建的方法 | 创新点在于提出了一种新的两步优化方法,针对噪声和低欠采样数据的MRI重建 | 文中提到的模型在解决鲁棒字典学习问题时仍然是非凸的且计算复杂度高 | 旨在改善MRI重建过程中的图像质量,特别是在低欠采样和噪声干扰情况下 | 研究对象为MRI重建中的稀疏性和低欠采样数据 | 数字病理学 | NA | 傅里叶变换 | 低秩和稀疏去噪重建模型(LSDRM)和鲁棒字典学习重建模型(RDLRM) | 图像 | 进行的广泛数值实验 | NA | NA | NA | NA |
| 11169 | 2024-08-05 |
Tiny Machine Learning for Concept Drift
2024-Jun, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2022.3229897
PMID:37015671
|
研究论文 | 本文介绍了一种基于深度学习的概念漂移微型机器学习方案 | 首次提出了针对概念漂移的微型机器学习(TML-CD)解决方案,结合深度学习特征提取器和k近邻分类器,具有混合适应模块 | 假设训练过程在云或边缘计算系统中进行,可能限制了在某些环境下的应用 | 设计能够在嵌入式系统和物联网单元中操作的机器学习技术 | 针对在概念漂移影响下的数据生成过程进行适应性处理 | 机器学习 | NA | 深度学习, k近邻分类 | NA | 图像和音频 | 多个基准测试 | NA | NA | NA | NA |
| 11170 | 2024-08-05 |
Explainable Graph Wavelet Denoising Network for Intelligent Fault Diagnosis
2024-Jun, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2022.3230458
PMID:37015709
|
研究论文 | 本文提出了一种可解释的图小波去噪网络用于智能故障诊断 | 提出了一种新的图小波去噪卷积以提取图结构数据的多尺度特征并实现信号去噪 | NA | 旨在提升在噪声环境下的智能故障诊断能力 | 主要研究信号中的故障相关组件及其去噪过程 | 机器学习 | NA | 图小波去噪卷积 | NA | 图结构数据 | NA | NA | NA | NA | NA |
| 11171 | 2024-08-05 |
Investigation of the MDM2-binding potential of de novo designed peptides using enhanced sampling simulations
2024-Jun, International journal of biological macromolecules
IF:7.7Q1
DOI:10.1016/j.ijbiomac.2024.131840
PMID:38679255
|
研究论文 | 本研究通过深度学习设计了高亲和力的肽结合物,以干扰MDM2与p53的相互作用 | 利用深度学习蛋白质设计和结构预测方法,识别出新的高亲和力肽结合物Pep1和Pep2 | 在标题和摘要中未提及具体的样本类型或数量,限制了结果的广泛适用性 | 旨在设计肽以干扰MDM2与p53的相互作用,提供癌症治疗的新途径 | 针对MDM2的结合肽Pep1和Pep2 | 计算机视觉 | 肿瘤 | 增强采样模拟 | 深度学习模型 | 分子动态模拟数据 | NA | NA | NA | NA | NA |
| 11172 | 2024-08-05 |
Deep learning radiomics of multimodal ultrasound for classifying metastatic cervical lymphadenopathy into primary cancer sites: a feasibility study
2024-Jun, Ultraschall in der Medizin (Stuttgart, Germany : 1980)
DOI:10.1055/a-2161-9369
PMID:38052240
|
研究论文 | 本研究探讨了基于多模态超声的深度学习放射组学在分类转移性颈部淋巴结病原发癌症位点中的可行性 | 该研究首次应用深度学习放射组学模型来区分转移性颈部淋巴结病的原发癌症位点 | 研究没有显示出超声弹性成像和对比增强超声与基础超声联合模型在准确性上有显著性提高 | 研究的目的是评估深度学习放射组学在分类转移性颈部淋巴结病原发癌症位点中的有效性 | 研究对象为280名癌症患者的280个经活检确认的转移性颈部淋巴结病样本 | 数字病理学 | 头颈肿瘤 | 多模态超声 | 深度学习放射组学模型 | 医学影像 | 280个转移性颈部淋巴结病样本 | NA | NA | NA | NA |
| 11173 | 2024-08-05 |
Deep Neural Networks and Tabular Data: A Survey
2024-Jun, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2022.3229161
PMID:37015381
|
综述 | 该文章提供了针对异构表格数据的深度学习方法的综述 | 第一次对表格数据的深度学习方法进行了深入的概述,并进行了系统分类 | 深度学习模型在监督学习任务中的表现仍然不及基于梯度提升树的算法,暗示研究进展停滞 | 探索深度学习在表格数据中的应用和方法 | 针对不同规模和学习目标的真实世界表格数据集进行比较 | 机器学习 | NA | 深度学习 | NA | 表格数据 | 五个真实世界的表格数据集 | NA | NA | NA | NA |
| 11174 | 2024-08-07 |
Correction: Deep learning radiomics of multimodal ultrasound for classifying metastatic cervical lymphadenopathy into primary cancer sites: a feasibility study
2024-Jun, Ultraschall in der Medizin (Stuttgart, Germany : 1980)
DOI:10.1055/a-2235-8731
PMID:38216132
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 11175 | 2024-08-05 |
Natalizumab reduces loss of gray matter and thalamic volume in patients with relapsing-remitting multiple sclerosis: A post hoc analysis from the randomized, placebo-controlled AFFIRM trial
2024-May, Multiple sclerosis (Houndmills, Basingstoke, England)
DOI:10.1177/13524585241235055
PMID:38469809
|
研究论文 | 本研究分析了Natalizumab在复发-缓解型多发性硬化症患者中对灰质和丘脑萎缩的影响 | 提供了首个安慰剂对照的证据,支持Natalizumab治疗可以减轻灰质和丘脑萎缩 | 本研究为事后分析,可能存在偏倚 | 评估Natalizumab对灰质和丘脑萎缩的影响 | 复发-缓解型多发性硬化症患者 | 数字病理学 | 多发性硬化症 | 深度学习图像分割 | NA | MRI数据 | NCT00027300中的复发-缓解型多发性硬化症患者的MRI数据 | NA | NA | NA | NA |
| 11176 | 2024-08-05 |
Using word evolution to predict drug repurposing
2024-Apr-30, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-024-02496-1
PMID:38689287
|
研究论文 | 该研究使用词语演变的方法来预测药物再利用。 | 提出了一种基于词语演变的替代方法,以识别适合再利用的药物 | 不同模型的性能可能与训练数据的数量相关 | 探讨通过词语语境变化来识别适合再利用的药物的可能性 | 临床药物及其再利用 | 自然语言处理 | NA | 深度学习分类 | NA | 文本 | 使用从MEDLINE中按两个月时间间隔顺序排列的出版物构建的词嵌入 | NA | NA | NA | NA |
| 11177 | 2024-08-05 |
Enhancing skin lesion classification with advanced deep learning ensemble models: a path towards accurate medical diagnostics
2024-04, Current problems in cancer
IF:2.5Q3
|
研究论文 | 本研究开发了一种基于先进深度学习的皮肤病变分类方法,旨在提高准确性 | 研究采用了多种深度神经网络模型的集成技术,显著提高了皮肤病变分类的准确性 | 数据可用性有限,分类不平衡以及噪声问题仍然存在 | 研究旨在开发准确的皮肤病变分类方法以改善生存率 | 研究对象为来自HAM10000和ISIC数据集的多样化皮肤病变图像 | 数字病理学 | 皮肤癌 | 图像修复、数据增强、SGD优化 | ResNeXt101、SeResNeXt101、ResNet152V2、DenseNet201、GoogLeNet、Xception | 图像 | HAM10000和ISIC数据集中多样化的皮肤病变图像 | NA | NA | NA | NA |
| 11178 | 2024-08-05 |
Advancements in Uric Acid Stone Detection: Integrating Deep Learning with CT Imaging and Clinical Assessments in the Upper Urinary Tract
2024, Urologia internationalis
IF:1.5Q3
DOI:10.1159/000538133
PMID:38432217
|
研究论文 | 本文旨在通过深度学习分析CT扫描和临床检测数据以识别尿酸结石 | 结合深度学习与CT成像和临床评估,开发多种预测模型识别尿酸结石 | 样本量较小,仅包括276名患者 | 建立准确识别尿酸结石的预测模型 | 276名上尿路结石患者 | 机器学习 | NA | CT成像、机器学习 | 深度学习模型 | 血液和尿液检测数据、CT扫描 | 276名患者,48名尿酸结石患者和228名其他类型结石患者 | NA | NA | NA | NA |
| 11179 | 2024-08-05 |
DeepSP: Deep learning-based spatial properties to predict monoclonal antibody stability
2024-Dec, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2024.05.029
PMID:38827232
|
研究论文 | 本研究开发了一种基于深度学习的模型DeepSP,以预测单克隆抗体的空间特性和稳定性 | 提出了一种无需进行分子动力学模拟的深度学习替代模型,能够直接基于抗体序列预测空间聚集倾向和空间电荷图 | 研究模型的表现依赖于已有的抗体序列数据集,可能不适用于所有抗体 | 旨在提高单克隆抗体开发的效率,并降低计算时间 | 使用20530个抗体序列数据集来训练DeepSP模型 | 机器学习 | NA | 深度学习 | 卷积神经网络 (CNN) | 序列 | 20530个抗体序列 | NA | NA | NA | NA |
| 11180 | 2024-08-05 |
Strong versus Weak Data Labeling for Artificial Intelligence Algorithms in the Measurement of Geographic Atrophy
2024 Sep-Oct, Ophthalmology science
IF:3.2Q1
DOI:10.1016/j.xops.2024.100477
PMID:38827491
|
研究论文 | 本研究旨在理解深度学习模型训练所需的数据标注要求,以测量地理性萎缩。 | 提出了通过整合大量弱标注图像与少量强标注图像的训练方法,以减少数据标注的成本和时间。 | 未提供关于数据标注对模型性能影响的详细分析。 | 研究深度学习模型在测量地理性萎缩中的应用与数据标注要求。 | 使用AREDS2图像进行模型训练和验证,以及GA临床试验图像进行测试。 | 机器学习 | 视网膜疾病 | 深度学习 | 卷积神经网络(CNN) | 图像 | AREDS2数据集(601张)和GlaxoSmithKline测试数据集(156张) | NA | NA | NA | NA |