本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1101 | 2025-03-25 |
Community assessment of methods to deconvolve cellular composition from bulk gene expression
2024-Aug-27, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-50618-0
PMID:39191725
|
research paper | 评估从批量基因表达数据中解卷积细胞组成的方法,通过社区范围的DREAM挑战进行 | 评估了多种解卷积方法,包括深度学习方法的强表现,确立了该范式在解卷积中的适用性 | 部分方法未针对所有功能性CD8+ T细胞状态进行训练或准确度较低 | 评估解卷积方法在推断肿瘤样本中免疫浸润水平的效果 | 体外和计算机模拟的癌症与健康免疫细胞的混合转录谱 | machine learning | cancer | bulk gene expression analysis | deep learning | gene expression data | NA |
1102 | 2025-03-25 |
Deep learning predicts postoperative opioids refills in a multi-institutional cohort of surgical patients
2024-08, Surgery
IF:3.2Q1
DOI:10.1016/j.surg.2024.03.054
PMID:38796387
|
research paper | 该研究探讨了深度学习模型在预测术后需要阿片类药物补充的患者中的应用 | 首次将深度学习模型应用于预测术后阿片类药物补充需求,并通过多机构队列验证其高准确性 | 研究为回顾性设计,且仅纳入单一医疗中心的患者数据 | 优化术后阿片类药物处方策略,平衡药物滥用风险与患者疼痛控制需求 | 接受择期手术的成年患者 | machine learning | NA | deep learning, random forest, eXtreme Gradient Boosting | 深度学习、随机森林、XGBoost | 临床医疗记录 | 9,731例择期手术患者(平均年龄62.1岁,51.4%为女性) |
1103 | 2025-03-25 |
Deep learning structural insights into heterotrimeric alternatively spliced P2X7 receptors
2024-Aug, Purinergic signalling
IF:3.0Q2
DOI:10.1007/s11302-023-09978-3
PMID:38032425
|
研究论文 | 本研究利用深度学习工具AlphaFold2-Multimer (AF2M)预测并验证了异源三聚体P2X7受体的结构 | 首次应用AF2M预测异源三聚体P2X7受体的结构,并通过多种方法验证了模型的准确性 | 研究主要依赖于计算模型,需要进一步的实验验证 | 探索异源三聚体P2X7受体的结构及其功能影响 | P2X7受体及其剪接变体 | 结构生物学 | NA | AlphaFold2-Multimer (AF2M), 冷冻电镜(cryo-EM) | AlphaFold2-Multimer | 蛋白质结构数据 | 多个P2X7受体剪接变体 |
1104 | 2025-03-25 |
An explainable long short-term memory network for surgical site infection identification
2024-07, Surgery
IF:3.2Q1
DOI:10.1016/j.surg.2024.03.006
PMID:38616153
|
研究论文 | 提出一种可解释的LSTM网络用于从医疗记录中识别手术部位感染 | 使用带有注意力层的LSTM网络提高模型性能的同时增加可解释性 | 数据仅来自单一医疗系统,可能影响模型泛化能力 | 开发自动识别手术部位感染的深度学习模型 | 手术患者的医疗记录数据 | 自然语言处理 | 手术部位感染 | 深度学习 | LSTM | 结构化数据和临床文本 | 9,185例手术事件 |
1105 | 2025-03-25 |
A deep learning quantification of patient specificity as a predictor of session attendance and treatment response to internet-enabled cognitive behavioural therapy for common mental health disorders
2024-04-01, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2024.01.134
PMID:38244796
|
研究论文 | 本研究利用深度学习模型评估患者对话的具体性对互联网认知行为疗法(CBT)治疗常见心理健康障碍的效果和疗程完成率的影响 | 首次使用深度学习量化患者对话具体性,并分析其与CBT治疗效果和疗程完成率的关系 | 无法从数据中推断因果关系 | 评估患者对话具体性对CBT治疗效果和疗程完成率的预测作用 | 接受互联网CBT治疗的常见心理健康障碍患者 | 自然语言处理 | 常见心理健康障碍 | 深度学习 | 深度学习模型 | 文本(治疗对话记录) | 65,030名参与者(353,614次治疗会话) |
1106 | 2025-03-25 |
Pediatric ECG-Based Deep Learning to Predict Left Ventricular Dysfunction and Remodeling
2024-03-19, Circulation
IF:35.5Q1
|
research paper | 本研究利用深度学习技术分析儿童心电图,预测左心室功能障碍和重构 | 首次将人工智能增强的心电图分析应用于儿科人群,预测左心室功能障碍和重构 | 研究未包括患有重大先天性心脏病的儿童,可能限制了模型的普适性 | 开发一种经济有效的筛查工具,用于儿童左心室功能障碍和重构的早期检测 | 年龄≤18岁且无重大先天性心脏病的儿童 | digital pathology | cardiovascular disease | ECG-echocardiogram配对分析 | CNN | ECG和超声心动图数据 | 训练队列包括92,377对ECG-超声心动图数据(46,261名患者),测试组包括内部测试(12,631名患者)、急诊科(2,830名患者)和外部验证(5,088名患者)队列 |
1107 | 2025-03-25 |
ANN multi-layer perceptron for prediction of blood-brain barrier permeable compounds for central nervous system therapeutics
2024-Mar-18, Journal of biomolecular structure & dynamics
IF:2.7Q2
DOI:10.1080/07391102.2024.2326671
PMID:38497749
|
研究论文 | 本文开发了一种基于人工神经网络的多层感知器模型,用于预测能够穿透血脑屏障的化合物,以促进中枢神经系统药物的早期筛选 | 使用大型数据集开发了一个高精度的ANN模型,用于预测BBB渗透性,其准确率、特异性、敏感性和AUC均表现优异 | 仅基于化学结构预测BBB渗透性可能存在一定难度,未提及模型在其他独立数据集上的验证情况 | 开发机器学习模型以预测化合物的血脑屏障渗透性,促进中枢神经系统药物的发现 | 潜在的能够穿透血脑屏障的化合物 | 机器学习 | 中枢神经系统疾病 | 机器学习 | ANN多层感知器 | 化学结构数据 | 大型数据集(具体数量未提及) |
1108 | 2025-03-25 |
Deep-VEGF: deep stacked ensemble model for prediction of vascular endothelial growth factor by concatenating gated recurrent unit with two-dimensional convolutional neural network
2024-Mar-07, Journal of biomolecular structure & dynamics
IF:2.7Q2
DOI:10.1080/07391102.2024.2323144
PMID:38450715
|
research paper | 该研究提出了一种名为Deep-VEGF的深度学习集成模型,用于预测血管内皮生长因子(VEGF) | 提出了一种新的特征描述符KSTS-BPSSM,并采用GRU、GAN和CNN的深度学习技术进行模型训练,通过堆叠学习方法集成GRU和CNN | 实验识别VEGF昂贵且耗时,该方法可能依赖于特定数据集的质量和规模 | 开发一种计算模型以准确预测VEGF,加速相关研究和药物发现 | 血管内皮生长因子(VEGF)及其在多种疾病中的作用 | machine learning | cancer, diabetic retinopathy, macular degeneration, arthritis | deep learning | GRU, GAN, CNN | primary sequences | NA |
1109 | 2025-03-25 |
CMNet: deep learning model for colon polyp segmentation based on dual-branch structure
2024-Mar, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.2.024004
PMID:38525292
|
research paper | 提出了一种基于双分支结构的深度学习模型CMNet,用于结肠息肉分割 | 采用双分支结构结合CNN与transformer,引入深度可分离卷积和条纹池化模块,提出聚合注意力模块(AAM)进行高维语义信息融合 | NA | 开发深度学习模型辅助结肠息肉的医学诊断和手术 | 结肠息肉 | digital pathology | colon cancer | deep learning | CNN, transformer | medical images | Kvasir-SEG数据集上的五折交叉验证 |
1110 | 2025-03-23 |
Conceptual understanding and cognitive patterns construction for physical education teaching based on deep learning algorithms
2024-12-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-83028-9
PMID:39732971
|
研究论文 | 本研究提出了一种基于深度学习的关联学习方法,用于理解体育教学概念,并通过超图卷积构建神经认知诊断模型,以分析学生的认知模式 | 使用卷积神经网络提取与教学概念相关的图像特征,并构建基于超图卷积的神经认知诊断模型,用于挖掘学生的长期学习序列数据并识别认知结果 | NA | 提高学生对体育教学概念的理解,帮助教师分析学生的认知模式 | 学生和体育教学概念 | 机器学习 | NA | 深度学习算法 | 卷积神经网络(CNN)、超图卷积 | 图像、学习序列数据 | 90,000个训练样本 |
1111 | 2025-03-23 |
Explainable artificial intelligence for stroke prediction through comparison of deep learning and machine learning models
2024-12-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82931-5
PMID:39733046
|
研究论文 | 本研究通过比较深度学习和机器学习模型,探索其在预测中风方面的效果,并利用SHAP方法提高模型的可解释性 | 本研究首次系统比较了多种深度学习和机器学习模型在中风预测中的表现,并利用SHAP方法增强了模型的可解释性 | 研究样本仅来自伊朗德黑兰的一家医院,可能限制了结果的普适性 | 比较深度学习和机器学习模型在中风预测中的效果 | 663名住院患者,包括401名健康个体和262名中风患者 | 机器学习 | 心血管疾病 | 10折交叉验证和超参数调优 | SVM, XGB, KNN, RF, DNN, FNN, LSTM, CNN | 医疗记录 | 663名患者(401名健康个体和262名中风患者) |
1112 | 2025-03-23 |
Deep learning versus manual morphology-based embryo selection in IVF: a randomized, double-blind noninferiority trial
2024-Nov, Nature medicine
IF:58.7Q1
DOI:10.1038/s41591-024-03166-5
PMID:39122964
|
研究论文 | 本研究通过多中心、随机、双盲、非劣效性平行组试验,评估了深度学习在选择体外受精最佳胚胎中的价值 | 首次在体外受精胚胎选择中比较了深度学习算法(iDAScore)与标准形态学评估的效果 | 未能证明深度学习在临床妊娠率上不劣于标准形态学评估和预定义的优先方案 | 评估深度学习在体外受精胚胎选择中的应用价值 | 42岁以下、至少有2个早期囊胚的女性 | 数字病理 | 生殖健康 | 深度学习 | iDAScore | 胚胎图像 | 1066名患者(533名在iDAScore组,533名在形态学组) |
1113 | 2025-03-23 |
An open-source framework for end-to-end analysis of electronic health record data
2024-Nov, Nature medicine
IF:58.7Q1
DOI:10.1038/s41591-024-03214-0
PMID:39266748
|
研究论文 | 本文介绍了一个名为ehrapy的开源Python框架,用于电子健康记录(EHR)数据的端到端分析 | ehrapy框架首次提供了一个模块化的开源工具,能够处理异构的流行病学和EHR数据,并支持从数据提取到低维表示生成的全流程分析 | 尽管ehrapy功能强大,但其在特定疾病或数据类型的应用效果仍需进一步验证 | 开发一个标准化的分析框架,用于电子健康记录数据的全面探索性分析 | 电子健康记录(EHR)数据 | 数字病理学 | 肺炎, 心血管疾病, SARS-CoV-2 | 数据提取, 质量控制, 低维表示生成, 生存分析, 轨迹推断, 因果推断 | 深度学习模型 | 电子健康记录(EHR)数据, 影像数据 | 未明确提及具体样本数量 |
1114 | 2025-03-23 |
ConvNext Mitosis Identification-You Only Look Once (CNMI-YOLO): Domain Adaptive and Robust Mitosis Identification in Digital Pathology
2024-10, Laboratory investigation; a journal of technical methods and pathology
DOI:10.1016/j.labinv.2024.102130
PMID:39233013
|
研究论文 | 本文提出了一种新的两阶段深度学习方法CNMI-YOLO,用于数字病理学中的有丝分裂检测,旨在提高不同类型癌症中有丝分裂的识别准确性 | 结合YOLOv7架构进行细胞检测和ConvNeXt架构进行细胞分类,解决了细胞形态变异和领域转移问题,显著提高了有丝分裂检测的准确性和鲁棒性 | 虽然模型在多个数据集上表现出色,但在未包含在训练数据集中的软组织肉瘤和黑色素瘤样本上的泛化能力仍需进一步验证 | 提高数字病理学中有丝分裂检测的准确性,以支持癌症的诊断和预后 | 数字病理学中的有丝分裂细胞 | 数字病理学 | 癌症 | 深度学习 | YOLOv7, ConvNeXt | 图像 | Mitosis Domain Generalization Challenge 2022数据集,以及外部的黑色素瘤和肉瘤测试集 |
1115 | 2025-03-23 |
Evaluating the relationship between magnetic resonance image quality metrics and deep learning-based segmentation accuracy of brain tumors
2024-Jul, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17059
PMID:38640464
|
研究论文 | 本研究探讨了磁共振图像质量指标(IQMs)与基于深度学习的脑肿瘤分割准确性之间的关系 | 首次系统性地评估了MR图像质量指标与深度学习模型分割性能之间的相关性,并提出了基于特定IQMs选择训练图像以提升模型准确性和泛化能力的方法 | 研究仅基于BraTS数据集,未在其他数据集上验证结果的普适性 | 评估输入训练图像的IQMs与基于深度学习的脑肿瘤分割准确性之间的关系,以开发更具泛化能力的模型 | 脑肿瘤的MRI图像 | 计算机视觉 | 脑肿瘤 | 深度学习 | 3D DenseNet | MRI图像 | BraTS 2020和2021训练队列的多模态MRI扫描 |
1116 | 2025-03-23 |
Hessian Regularized
L
2
,
1
-Nonnegative Matrix Factorization and Deep Learning for miRNA-Disease Associations Prediction
2024-03, Interdisciplinary sciences, computational life sciences
DOI:10.1007/s12539-023-00594-8
PMID:38099958
|
研究论文 | 本文提出了一种结合Hessian正则化非负矩阵分解和深度学习的模型,用于预测miRNA与疾病之间的关联 | 引入了一种新的迭代融合方法,有效减少了初始miRNA-疾病关联矩阵的稀疏性,并设计了一个混合模型框架,结合深度学习、矩阵分解和奇异值分解来捕捉和描述miRNA与疾病的复杂非线性特征 | NA | 预测miRNA与疾病之间的潜在关联,为医学研究者提供初步见解 | miRNA与疾病的关联 | 机器学习 | 肺癌、膀胱癌、乳腺癌 | 深度学习、矩阵分解、奇异值分解 | Hessian正则化非负矩阵分解与深度学习结合的混合模型 | miRNA-疾病关联矩阵 | NA |
1117 | 2025-03-23 |
Analysis and review of techniques and tools based on machine learning and deep learning for prediction of lysine malonylation sites in protein sequences
2024-01-19, Database : the journal of biological databases and curation
DOI:10.1093/database/baad094
PMID:38245002
|
综述 | 本文对基于机器学习和深度学习的蛋白质序列中赖氨酸丙二酰化位点预测技术及工具进行了全面分析和回顾 | 提出了一种由经典机器学习模型和深度学习模型组成的混合架构,用于集成预测结果,并展示了其优越性能 | 现有方法存在特征提取不当、高维特征和低效分类器等特定缺点 | 提高蛋白质序列中赖氨酸丙二酰化位点的预测准确性和效率 | 蛋白质序列中的赖氨酸丙二酰化位点 | 机器学习 | NA | 机器学习(ML)和深度学习 | 经典ML模型和深度学习模型 | 蛋白质序列数据 | 基于最新数据库提取的新数据集 |
1118 | 2025-03-23 |
Current status of artificial intelligence methods for skin cancer survival analysis: a scoping review
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1243659
PMID:38711781
|
综述 | 本文综述了人工智能在皮肤癌生存分析中的应用现状,重点分析了监督学习、无监督学习、深度学习和自然语言处理等方法 | 本文首次系统性地总结了人工智能在皮肤癌生存分析中的应用,并指出了深度学习在黑色素瘤组织病理学解释中的集中应用,同时提出了结合遗传、组织病理学和临床数据进行更广泛预后分析的机会 | 本文仅纳入了14篇符合纳入标准的文献,且大多数文献集中在黑色素瘤上,对其他类型皮肤癌的研究较少 | 探讨人工智能在皮肤癌生存分析中的应用,以改善生存分析、靶向治疗和预后 | 皮肤癌患者 | 数字病理学 | 皮肤癌 | 深度学习,自然语言处理 | 监督学习,无监督学习,深度学习 | 遗传数据,临床历史,人口统计数据,病理数据 | 14篇文献 |
1119 | 2025-03-22 |
On-board synthetic 4D MRI generation from 4D CBCT for radiotherapy of abdominal tumors: A feasibility study
2024-Dec, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17347
PMID:39137256
|
研究论文 | 本研究评估了基于人工智能方法从4D CBCT生成合成4D MRI的可行性,用于腹部肿瘤的放射治疗 | 提出了一种基于深度学习的合成4D MRI生成方法,利用4D CBCT图像和运动建模信息,为传统kV-based LINAC的腹部放射治疗提供潜在的改进方案 | 合成MRI的生成可能面临纹理生成的挑战,且容易产生幻觉,影响运动准确性 | 评估在传统放射治疗设备上生成合成4D MRI的可行性,以改善腹部肿瘤的治疗定位 | 腹部肿瘤 | 医学影像处理 | 腹部肿瘤 | 深度学习,卷积神经网络(CNN) | CNN | 4D CBCT图像,4D MRI图像 | 1000个参考CT的变形样本 |
1120 | 2025-03-22 |
Prediction of Perceived Exertion Ratings in National Level Soccer Players Using Wearable Sensor Data and Machine Learning Techniques
2024-12, Journal of sports science & medicine
DOI:10.52082/jssm.2024.744
PMID:39649569
|
研究论文 | 本研究旨在通过可穿戴传感器数据和机器学习技术预测国家级足球运动员的主观感知运动强度评分(RPE) | 使用深度学习架构和多种机器学习算法预测RPE,并评估不同模型的效果和泛化能力 | 研究仅针对26名男性职业足球运动员,样本量相对较小 | 评估机器学习模型在预测国家级足球运动员RPE方面的效果 | 26名男性职业足球运动员 | 机器学习 | NA | 机器学习算法和深度学习架构 | 深度学习模型、树基机器学习模型(如ExtraTree) | 传感器数据(心率、GPS、加速度计数据)和RPE评分 | 5402次训练会话和732次比赛观察,涉及26名运动员 |