深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 11790 篇文献,本页显示第 11241 - 11260 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
11241 2024-08-07
Artificial Intelligence in Lung Cancer Imaging: From Data to Therapy
2024, Critical reviews in oncogenesis
综述 本文全面回顾了人工智能(AI)在肺部癌症管理中的应用,从数据处理到治疗预测 AI技术在肺部癌症特征描述和结果预测中的应用,包括使用深度学习模型如U-Net、BCDU-Net等进行客观量化和组织特征提取 NA 探讨AI在肺部癌症管理中的作用,提高诊断、预后和治疗的精确性 AI在肺部癌症影像分析中的应用,包括分割、虚拟活检和结果预测 计算机视觉 肺癌 深度学习 U-Net, BCDU-Net 影像 NA
11242 2024-08-07
Big data analysis for Covid-19 in hospital information systems
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种新的深度学习联合框架,用于处理具有分布差异的异构数据集,以准确识别COVID-19 通过重新设计COVID-Net的网络架构和学习策略,以及在潜在空间中进行独立特征归一化,提高了预测准确性和学习效率。同时,使用对比训练目标增强了语义嵌入的领域不变性,提升了分类性能 NA 开发基于CT图像的自动化COVID-19识别工具,以辅助临床诊断 COVID-19的CT图像数据 计算机视觉 COVID-19 深度学习 CNN 图像 两个大规模公开的COVID-19诊断数据集,包含CT图像
11243 2024-08-07
Toward interpretable and generalized mitosis detection in digital pathology using deep learning
2024 Jan-Dec, Digital health IF:2.9Q2
研究论文 本文针对数字病理学中有丝分裂检测的挑战,提出了一种基于深度学习的方法,以提高检测的准确性、泛化性和可解释性 本文提出的方法在多个数据集和临床环境中展示了良好的泛化性和可解释性 NA 提高数字病理学中有丝分裂检测的准确性和泛化性 有丝分裂核的检测 数字病理学 癌症 深度学习 NA 图像 使用了MiDoG'22数据集进行训练、验证和测试,并在TUPAC'16数据集和Shaukat Khanum纪念癌症医院和研究中心的实时案例中进行了测试
11244 2024-08-07
Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies
2024, Frontiers in oncology IF:3.5Q2
综述 本文综述了人工智能和放射组学在肝脏肿瘤精准诊断和预后中的进展和潜力 探讨了人工智能和放射组学技术在基于影像数据预测肿瘤组织病理学、基因型和免疫表型方面的创新应用 讨论了人工智能技术的技术局限性和潜在缺陷 旨在提高肝脏肿瘤的诊断准确性和预后,从而改善患者护理 肝脏肿瘤的诊断和预后 计算机视觉 肝癌 放射组学 深度学习 影像 NA
11245 2024-08-07
Multilayer cyberattacks identification and classification using machine learning in internet of blockchain (IoBC)-based energy networks
2024-Jun, Data in brief IF:1.0Q3
研究论文 本文研究了基于区块链的能源网络中使用机器学习模型识别和分类多层网络攻击 开发了一种结合深度学习和长短期记忆模型的混合机器学习模型,用于识别和分类能源系统中的拒绝服务和分布式拒绝服务攻击 NA 研究如何通过先进的信息和通信技术整合可再生能源,并解决由此带来的网络安全问题 太阳能和风能分布式能源系统中的网络攻击 机器学习 NA 机器学习 混合模型(深度学习与长短期记忆模型) 大数据集 从太阳能和风能分布式能源系统中获取的大数据集
11246 2024-08-07
Deep Learning Model for Cosmetic Gel Classification Based on a Short-Time Fourier Transform and Spectrogram
2024-May-22, ACS applied materials & interfaces IF:8.3Q1
研究论文 本研究提出了一种基于短时傅里叶变换和频谱图的深度学习模型,用于化妆品凝胶的分类 采用短时傅里叶变换和连续小波变换对时间序列摩擦信号进行预处理,并利用基于ResNet的卷积神经网络进行优化,以提高分类性能 NA 开发一种新的方法来替代传统的专家小组评估,客观评估化妆品的用户体验 化妆品凝胶的物理特性 机器学习 NA 短时傅里叶变换(STFT),连续小波变换(CWT) CNN 时间序列信号 NA
11247 2024-08-07
Multitask Learning Deep Neural Networks Enable Embedded Design of Active Metamaterials
2024-May-22, ACS applied materials & interfaces IF:8.3Q1
研究论文 本研究提出并实现了一种基于多任务学习的深度神经网络框架,旨在简化集成主动超表面的光子器件的正向建模和逆向设计过程 该研究通过深度学习框架独立建模滤波器的结晶度和几何参数,最大化利用GSST调谐进行带通滤波,并讨论了自注意力机制和噪声的影响 NA 简化光子器件的正向建模和逆向设计过程 集成主动超表面的光子器件 机器学习 NA 深度学习 深度神经网络 NA NA
11248 2024-08-07
A Self-supervised Learning-Based Fine-Grained Classification Model for Distinguishing Malignant From Benign Subcentimeter Solid Pulmonary Nodules
2024-May-21, Academic radiology IF:3.8Q1
研究论文 本研究开发并验证了一种基于自监督学习的细粒度分类模型,用于区分恶性与良性亚厘米实性肺结节 采用自监督预训练的细粒度网络来预测肺结节的恶性程度,相较于传统方法具有更好的性能 NA 开发并验证一种模型,用于区分恶性与良性亚厘米实性肺结节 亚厘米实性肺结节 机器学习 肺部疾病 自监督学习 细粒度网络 CT图像 共1276名患者,包含1389个亚厘米实性肺结节
11249 2024-08-07
PrCRS: a prediction model of severe CRS in CAR-T therapy based on transfer learning
2024-May-20, BMC bioinformatics IF:2.9Q1
研究论文 本文提出了一种基于迁移学习的深度学习预测模型PrCRS,用于预测CAR-T疗法中严重细胞因子释放综合征(CRS)的发生 本研究首次采用深度学习模型,特别是基于U-net和Transformer的模型,来更准确地预测严重CRS的发生,填补了该领域的研究空白 NA 开发一种能够提前预测严重CRS发生的模型,以预防其在CAR-T疗法中的不良事件 CAR-T疗法中的严重细胞因子释放综合征(CRS) 机器学习 血液恶性肿瘤和实体肿瘤 迁移学习 U-net和Transformer 数据 使用来自COVID-19患者的数据进行迁移学习
11250 2024-08-07
Ventilator-Associated Pneumonia Prediction Models Based on AI: Scoping Review
2024-May-14, JMIR medical informatics IF:3.1Q2
综述 本文综述了基于人工智能的呼吸机相关肺炎预测模型,旨在为未来临床实践中早期识别高风险群体提供参考 人工智能模型相比传统方法具有更好的预测性能,有望在未来为呼吸机相关肺炎风险预测提供不可或缺的工具 当前研究主要处于模型构建和验证阶段,对于临床应用的实施和指导需要进一步研究 回顾基于人工智能的呼吸机相关肺炎预测模型,为临床实践中早期识别高风险群体提供参考 呼吸机相关肺炎的预测模型 机器学习 呼吸系统疾病 机器学习 随机森林模型 文本数据 5项研究的样本量小于1000
11251 2024-08-07
Comparison of deep learning models with simple method to assess the problem of antimicrobial peptides prediction
2024-May, Molecular informatics IF:2.8Q2
研究论文 本文比较了深度学习模型与简单方法在抗菌肽预测问题上的表现 提出了一种仅使用氨基酸组成预测抗菌肽能力的简单方法,并展示了与最佳方法相当的结果 NA 比较简单和复杂方法在抗菌肽预测中的效果 抗菌肽的预测方法 机器学习 NA BERT transformer, 多层感知器 (MLP), 轻量注意力 (LA) BERT, MLP, LA 序列 NA
11252 2024-08-07
NRG Oncology Assessment of Artificial Intelligence Deep Learning-Based Auto-segmentation for Radiation Therapy: Current Developments, Clinical Considerations, and Future Directions
2024-May-01, International journal of radiation oncology, biology, physics
研究论文 本文评估了人工智能深度学习在放射治疗中自动分割的应用,探讨了当前进展、临床考虑和未来方向 介绍了商业AI自动分割工具在减少手动轮廓绘制工作量和缩短治疗计划时间方面的显著优势 商业AI自动分割模型在多样化的临床场景中,尤其是在非受控环境中的应用存在挑战 评估商业AI自动分割工具的临床应用和潜力,并提出未来发展的建议 深度学习神经网络在放射治疗中的自动分割应用 机器学习 NA 深度学习 深度学习神经网络 图像 NA
11253 2024-08-07
Deep-NCA: A deep learning methodology for performing noncompartmental analysis of pharmacokinetic data
2024-05, CPT: pharmacometrics & systems pharmacology
研究论文 本文介绍了一种名为Deep-NCA的深度学习模型,用于提高非房室分析(NCA)中关键药代动力学(PK)参数的预测精度 Deep-NCA采用合成PK数据进行模型训练,并使用创新的个性化数据预处理方法,相比传统NCA在稀疏PK数据上表现更优 需要进一步验证和改进以提高其在实际应用中的效率和准确性 开发一种新的深度学习方法来改善药代动力学数据的非房室分析 药代动力学数据的非房室分析 机器学习 NA 深度学习 深度学习模型 药代动力学数据 六个未见过的模拟药物在多种给药方案下的数据
11254 2024-08-07
Deep network fault diagnosis for imbalanced small-sized samples via a coupled adversarial autoencoder based on the Bayesian method
2024-May-01, The Review of scientific instruments
研究论文 本文介绍了一种基于贝叶斯方法的耦合对抗自编码器(CoAAE),用于解决深度网络故障诊断中样本量小且不平衡的问题 提出了一种新的耦合对抗自编码器模型,通过生成假样本来增加样本量,并利用并行耦合网络处理样本不平衡问题 NA 解决深度网络故障诊断中样本量小且不平衡的问题 深度网络故障诊断模型 机器学习 NA 耦合对抗自编码器(CoAAE) CNN 数据 小样本且不平衡
11255 2024-08-07
Artificial intelligence-assisted evaluation of cardiac function by oncology staff in chemotherapy patients
2024-May, European heart journal. Digital health
研究论文 本研究评估了肿瘤科工作人员使用AI辅助手持超声设备进行左心室射血分数计算的可行性和准确性 使用AI技术辅助肿瘤科工作人员进行左心室射血分数的自动计算 研究仅在特定患者群体中进行,可能需要进一步验证在更广泛人群中的适用性 评估AI辅助下肿瘤科工作人员计算左心室射血分数的可行性和准确性 肿瘤科患者的心脏功能评估 NA NA 深度学习算法 深度学习模型 图像 115名患者
11256 2024-08-07
Predicting heart failure outcomes by integrating breath-by-breath measurements from cardiopulmonary exercise testing and clinical data through a deep learning survival neural network
2024-May, European heart journal. Digital health
研究论文 本研究通过深度学习生存神经网络整合心肺运动测试中的逐次呼吸测量数据和临床数据,预测心力衰竭患者的预后 本研究首次将心肺运动测试中的逐次呼吸数据整合到深度学习模型中,提高了预测心力衰竭长期预后的准确性 NA 开发并验证一个基于深度学习框架的时间到事件预测模型,用于预测心力衰竭的预后 2490名患有高风险心脏疾病或心力衰竭的成年患者 机器学习 心血管疾病 深度学习 DeepSurv 时间序列数据 2490名患者
11257 2024-08-07
Using natural language processing for automated classification of disease and to identify misclassified ICD codes in cardiac disease
2024-May, European heart journal. Digital health
研究论文 本文使用自然语言处理(NLP)技术自动分类疾病,并识别心脏疾病中误分类的国际疾病分类(ICD)代码 开发了一种新的NLP算法,该算法在医疗记录中分类疾病的准确性很高,并且能够识别ICD编码错误 算法中有70%的误分类是由于算法本身的不正确标记,而非ICD编码错误 研究使用NLP技术自动分类非结构化医疗记录中的疾病,并与传统ICD编码进行比较 心房颤动(AF)和心力衰竭(HF)的诊断 自然语言处理 心血管疾病 自然语言处理(NLP) 极端梯度提升(XGBoost) 文本 使用了两个数据集:MIMIC-III数据集(55,177条记录)和比利时医院数据集(12,706条记录),最终保留了1,438份报告在比利时数据集中
11258 2024-08-07
Artificial intelligence-based classification of echocardiographic views
2024-May, European heart journal. Digital health
研究论文 本文研究了使用卷积神经网络(CNN)对超声心动图视图进行自动分类的方法 本文首次使用二维和三维CNN对超声心动图视图进行分类,并实现了高准确率 NA 旨在通过人工智能增强超声心动图的自动评估能力 超声心动图视图的自动分类 机器学习 NA 卷积神经网络(CNN) CNN 视频 研究使用了来自909名患者的经胸超声心动图(TTE)研究,以及229名患者的内部验证数据
11259 2024-08-07
Decoding 2.3 million ECGs: interpretable deep learning for advancing cardiovascular diagnosis and mortality risk stratification
2024-May, European heart journal. Digital health
研究论文 本文利用232万份心电图数据,开发了一种深度学习模型,用于心血管疾病的诊断和死亡风险分层,并展示了其在临床知识发现方面的潜力 本文首次大规模应用人工智能模型于心电图分析,提供细粒度的解释性,以推进心血管诊断和死亡风险分层 NA 探索人工智能在心电图分析中的应用,以提高心血管疾病诊断的准确性和死亡风险分层 心电图数据,心血管疾病诊断,死亡风险分层 机器学习 心血管疾病 深度学习 深度学习模型 心电图数据 232万份心电图数据,来自155万8772名患者,随访7年
11260 2024-08-07
Optimized 3D brachial plexus MR neurography using deep learning reconstruction
2024-Apr, Skeletal radiology IF:1.9Q3
研究论文 评估使用深度学习重建(DLR)的快速单侧3D臂丛磁共振神经成像(MRN)是否能提供与未使用DLR的标准扫描相似的图像质量 使用深度学习重建技术优化了3D臂丛MR神经成像的采集速度,同时保持了图像质量 NA 评估深度学习重建技术在快速3D臂丛MR神经成像中的应用效果 30名受试者的臂丛3.0T MRN图像质量 计算机视觉 NA 深度学习重建(DLR) 深度学习模型 图像 30名受试者
回到顶部