本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11541 | 2024-08-07 |
Deformable registration of magnetic resonance images using unsupervised deep learning in neuro-/radiation oncology
2024-May-21, Radiation oncology (London, England)
DOI:10.1186/s13014-024-02452-3
PMID:38773620
|
研究论文 | 本文开发了一种基于无监督深度学习的3D卷积U-Net变形图像配准方法,用于脑胶质瘤患者的术前和随访MRI扫描的精确配准 | 提出了一种新的基于无监督学习的3D卷积U-Net变形图像配准方法,无需预对齐和标记,能够实现端到端的MRI扫描配准 | NA | 开发一种自动化的3D变形图像配准方法,用于脑胶质瘤患者的MRI扫描 | 脑胶质瘤患者的术前和随访MRI扫描 | 机器学习 | 脑癌 | MRI | U-Net | 图像 | 160名脑胶质瘤患者 |
11542 | 2024-08-07 |
HCA-DAN: hierarchical class-aware domain adaptive network for gastric tumor segmentation in 3D CT images
2024-May-21, Cancer imaging : the official publication of the International Cancer Imaging Society
IF:3.5Q1
DOI:10.1186/s40644-024-00711-w
PMID:38773670
|
研究论文 | 本文提出了一种名为HCA-DAN的分层类感知域自适应网络,用于3D CT图像中的胃肿瘤分割 | 引入了一种新的3D神经网络AsTr,用于从各向异性分辨率的CT图像中提取多尺度上下文特征,并结合分层类感知域对齐模块HCADA进行跨域的多尺度上下文特征自适应对齐 | 文章未明确提及具体限制 | 旨在提高从3D CT图像中自动分割胃肿瘤的准确性,特别是在多中心数据集中的应用 | 胃肿瘤的3D CT图像分割 | 计算机视觉 | 胃癌 | 3D卷积神经网络(CNN) | CNN, Transformer | 图像 | 使用了来自四个医学中心的CT图像数据集 |
11543 | 2024-08-07 |
Examining the Gateway Hypothesis and Mapping Substance Use Pathways on Social Media: Machine Learning Approach
2024-May-07, JMIR formative research
IF:2.0Q4
DOI:10.2196/54433
PMID:38713904
|
研究论文 | 本研究利用社交媒体数据,通过机器学习方法探讨物质使用路径及其与风险级别的关系 | 本研究首次大规模分析社交媒体数据,以预测物质使用风险级别的升级或降级,并识别相关的语言线索 | 研究结果需进一步探索,以确定对干预措施的直接影响 | 通过分析社交媒体数据,深入理解物质使用路径,识别风险升级或降级的语言标志 | 社交媒体用户在不同风险级别的物质使用之间的过渡 | 机器学习 | NA | 深度学习 | NA | 文本 | 超过2.29万条帖子,约2937万条评论,来自约140万用户 |
11544 | 2024-08-07 |
Deep learning-based screening tool for rotator cuff tears on shoulder radiography
2024-May, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association
IF:1.5Q3
DOI:10.1016/j.jos.2023.05.004
PMID:37236873
|
研究论文 | 本研究开发了一种基于深度学习的算法,用于通过肩部X光片筛查肩袖撕裂 | 本研究首次将深度学习技术应用于肩部X光片,以筛查肩袖撕裂 | 对于部分厚度肩袖撕裂的诊断性能较低 | 开发一种基于深度学习的筛查工具,用于通过肩部X光片早期诊断肩袖撕裂 | 肩袖撕裂的早期诊断 | 机器学习 | 肩袖撕裂 | 深度学习 | 深度学习算法 | X光片 | 2803张肩部X光片 |
11545 | 2024-08-07 |
Deep learning-accelerated T2-weighted imaging versus conventional T2-weighted imaging in the female pelvic cavity: image quality and diagnostic performance
2024-May, Acta radiologica (Stockholm, Sweden : 1987)
DOI:10.1177/02841851241228192
PMID:38343091
|
研究论文 | 本研究比较了基于深度学习的加速T2加权成像与传统T2加权成像在女性盆腔中的图像质量和诊断性能 | 使用深度学习算法加速磁共振成像重建,减少噪声,实现更快的MRI采集 | 深度学习加速的T2加权成像在信号-噪声比方面略低于传统T2加权成像 | 比较传统与深度学习加速的T2加权成像在女性盆腔中的图像质量和诊断性能 | 女性盆腔MRI检查中的T2加权成像 | 计算机视觉 | NA | 磁共振成像 (MRI) | 深度学习 (DL) | 图像 | 149例连续女性盆腔MRI检查,包括294张随机排序的矢状T2加权图像 |
11546 | 2024-08-07 |
Enhanced capillary delivery with nanobubble-mediated blood-brain barrier opening and advanced high resolution vascular segmentation
2024-May, Journal of controlled release : official journal of the Controlled Release Society
IF:10.5Q1
DOI:10.1016/j.jconrel.2024.04.001
PMID:38575074
|
研究论文 | 本文利用纳米气泡和聚焦超声技术在老鼠模型中实现了靶向且改进的血脑屏障开放,并通过高分辨率血管分割技术评估了其效果。 | 本文首次使用纳米气泡和聚焦超声技术实现了靶向且改进的血脑屏障开放,并通过深度学习架构实现了血管分割,显著减少了时间成本。 | NA | 克服血脑屏障以增强脑部治疗效果 | 老鼠模型的血脑屏障 | 生物医学工程 | NA | 纳米气泡,聚焦超声 | 深度学习架构 | 图像 | 老鼠模型 |
11547 | 2024-08-07 |
Application of deep learning on mammographies to discriminate between low and high-risk DCIS for patient participation in active surveillance trials
2024-Apr-05, Cancer imaging : the official publication of the International Cancer Imaging Society
IF:3.5Q1
DOI:10.1186/s40644-024-00691-x
PMID:38576031
|
研究论文 | 本文研究使用卷积神经网络(CNN)在乳腺X光片上区分低风险和高风险导管原位癌(DCIS)的表现和临床效用 | 利用深度学习模型U-Net CNN在乳腺X光片上区分低风险和高风险DCIS,为主动监测试验提供决策支持 | 研究为单中心回顾性研究,样本量有限 | 评估CNN在乳腺X光片上区分高风险(III级)DCIS和/或浸润性乳腺癌(IBC)与低风险(I/II级)DCIS的性能和临床效用 | 导管原位癌(DCIS)患者 | 机器学习 | 乳腺癌 | 卷积神经网络(CNN) | U-Net CNN | 图像 | 464名DCIS患者,包括681张训练图像和173张测试图像 |
11548 | 2024-08-07 |
Machine learning and new insights for breast cancer diagnosis
2024-Apr, The Journal of international medical research
IF:1.4Q4
DOI:10.1177/03000605241237867
PMID:38663911
|
综述 | 本文综述了利用医学影像和机器学习技术在乳腺癌检测和干预中的应用 | 介绍了深度学习和机器学习在处理非结构化信息如图像、声音和语言方面的应用 | NA | 旨在为科学家提供人工智能和机器学习在研究和临床中应用的指导 | 乳腺癌的检测和干预 | 机器学习 | 乳腺癌 | 深度学习 | 人工神经网络 | 图像 | NA |
11549 | 2024-08-07 |
Diagnosing and grading gastric atrophy and intestinal metaplasia using semi-supervised deep learning on pathological images: development and validation study
2024-03, Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association
IF:6.0Q1
DOI:10.1007/s10120-023-01451-9
PMID:38095766
|
研究论文 | 本研究开发并验证了一种基于半监督深度学习的诊断和分级胃萎缩和肠化生的方法 | 提出了一种名为GasMIL的半监督深度学习算法,用于诊断和分级胃萎缩和肠化生,其性能超过了10名病理学家的评估 | NA | 建立并验证一种使用深度学习和OLGA/OLGIM对个体胃癌风险进行分类的诊断方法 | 胃萎缩和肠化生的诊断与分级 | 数字病理学 | 胃癌 | 半监督深度学习 | 深度学习模型 | 病理图像 | 共纳入545名患者,包括2725张全切片图像,分为训练集(349名)、内部验证集(87名)和外部验证集(109名) |
11550 | 2024-08-07 |
Role of Artificial Intelligence in Drug Discovery and Target Identification in Cancer
2024, Current drug delivery
IF:2.8Q2
|
综述 | 本文综述了人工智能在癌症药物发现和靶点识别中的应用 | 探讨了多种人工智能技术如机器学习、神经网络学习、深度学习和网络学习在药物发现和靶点识别中的应用 | 未提及具体的研究局限 | 旨在探讨人工智能技术在癌症药物发现和靶点识别中的作用 | 癌症药物发现和靶点识别 | 机器学习 | 癌症 | 人工智能 | NA | 数据集 | NA |
11551 | 2024-08-07 |
Automatic surgical phase recognition-based skill assessment in laparoscopic distal gastrectomy using multicenter videos
2024-01, Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association
IF:6.0Q1
DOI:10.1007/s10120-023-01450-w
PMID:38038811
|
研究论文 | 本研究开发了一种基于深度学习的手术阶段识别模型,用于评估腹腔镜远端胃切除术的手术技能,并使用多中心视频进行验证 | 本研究首次使用多中心视频数据开发了用于腹腔镜远端胃切除术的手术阶段识别模型,并探索了其在自动手术技能评估中的应用 | NA | 开发和验证一种基于深度学习的手术阶段识别模型,以实现自动手术技能评估 | 腹腔镜远端胃切除术的手术视频和手术技能评估 | 机器学习 | 胃癌 | 深度学习 | 图像分类模型 | 视频 | 20家医院的手术视频 |
11552 | 2024-08-07 |
Artificial Intelligence in Lung Cancer Imaging: From Data to Therapy
2024, Critical reviews in oncogenesis
DOI:10.1615/CritRevOncog.2023050439
PMID:38505877
|
综述 | 本文全面回顾了人工智能(AI)在肺部癌症管理中的应用,从数据处理到治疗预测 | AI技术在肺部癌症特征描述和结果预测中的应用,包括使用深度学习模型如U-Net、BCDU-Net等进行客观量化和组织特征提取 | NA | 探讨AI在肺部癌症管理中的作用,提高诊断、预后和治疗的精确性 | AI在肺部癌症影像分析中的应用,包括分割、虚拟活检和结果预测 | 计算机视觉 | 肺癌 | 深度学习 | U-Net, BCDU-Net | 影像 | NA |
11553 | 2024-08-07 |
Big data analysis for Covid-19 in hospital information systems
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0294481
PMID:38776299
|
研究论文 | 本文提出了一种新的深度学习联合框架,用于处理具有分布差异的异构数据集,以准确识别COVID-19 | 通过重新设计COVID-Net的网络架构和学习策略,以及在潜在空间中进行独立特征归一化,提高了预测准确性和学习效率。同时,使用对比训练目标增强了语义嵌入的领域不变性,提升了分类性能 | NA | 开发基于CT图像的自动化COVID-19识别工具,以辅助临床诊断 | COVID-19的CT图像数据 | 计算机视觉 | COVID-19 | 深度学习 | CNN | 图像 | 两个大规模公开的COVID-19诊断数据集,包含CT图像 |
11554 | 2024-08-07 |
Toward interpretable and generalized mitosis detection in digital pathology using deep learning
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241255471
PMID:38778869
|
研究论文 | 本文针对数字病理学中有丝分裂检测的挑战,提出了一种基于深度学习的方法,以提高检测的准确性、泛化性和可解释性 | 本文提出的方法在多个数据集和临床环境中展示了良好的泛化性和可解释性 | NA | 提高数字病理学中有丝分裂检测的准确性和泛化性 | 有丝分裂核的检测 | 数字病理学 | 癌症 | 深度学习 | NA | 图像 | 使用了MiDoG'22数据集进行训练、验证和测试,并在TUPAC'16数据集和Shaukat Khanum纪念癌症医院和研究中心的实时案例中进行了测试 |
11555 | 2024-08-07 |
Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1362737
PMID:38779098
|
综述 | 本文综述了人工智能和放射组学在肝脏肿瘤精准诊断和预后中的进展和潜力 | 探讨了人工智能和放射组学技术在基于影像数据预测肿瘤组织病理学、基因型和免疫表型方面的创新应用 | 讨论了人工智能技术的技术局限性和潜在缺陷 | 旨在提高肝脏肿瘤的诊断准确性和预后,从而改善患者护理 | 肝脏肿瘤的诊断和预后 | 计算机视觉 | 肝癌 | 放射组学 | 深度学习 | 影像 | NA |
11556 | 2024-08-07 |
Multilayer cyberattacks identification and classification using machine learning in internet of blockchain (IoBC)-based energy networks
2024-Jun, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.110461
PMID:38774244
|
研究论文 | 本文研究了基于区块链的能源网络中使用机器学习模型识别和分类多层网络攻击 | 开发了一种结合深度学习和长短期记忆模型的混合机器学习模型,用于识别和分类能源系统中的拒绝服务和分布式拒绝服务攻击 | NA | 研究如何通过先进的信息和通信技术整合可再生能源,并解决由此带来的网络安全问题 | 太阳能和风能分布式能源系统中的网络攻击 | 机器学习 | NA | 机器学习 | 混合模型(深度学习与长短期记忆模型) | 大数据集 | 从太阳能和风能分布式能源系统中获取的大数据集 |
11557 | 2024-08-07 |
Deep Learning Model for Cosmetic Gel Classification Based on a Short-Time Fourier Transform and Spectrogram
2024-May-22, ACS applied materials & interfaces
IF:8.3Q1
DOI:10.1021/acsami.4c03675
PMID:38738662
|
研究论文 | 本研究提出了一种基于短时傅里叶变换和频谱图的深度学习模型,用于化妆品凝胶的分类 | 采用短时傅里叶变换和连续小波变换对时间序列摩擦信号进行预处理,并利用基于ResNet的卷积神经网络进行优化,以提高分类性能 | NA | 开发一种新的方法来替代传统的专家小组评估,客观评估化妆品的用户体验 | 化妆品凝胶的物理特性 | 机器学习 | NA | 短时傅里叶变换(STFT),连续小波变换(CWT) | CNN | 时间序列信号 | NA |
11558 | 2024-08-07 |
Multitask Learning Deep Neural Networks Enable Embedded Design of Active Metamaterials
2024-May-22, ACS applied materials & interfaces
IF:8.3Q1
DOI:10.1021/acsami.4c01730
PMID:38739095
|
研究论文 | 本研究提出并实现了一种基于多任务学习的深度神经网络框架,旨在简化集成主动超表面的光子器件的正向建模和逆向设计过程 | 该研究通过深度学习框架独立建模滤波器的结晶度和几何参数,最大化利用GSST调谐进行带通滤波,并讨论了自注意力机制和噪声的影响 | NA | 简化光子器件的正向建模和逆向设计过程 | 集成主动超表面的光子器件 | 机器学习 | NA | 深度学习 | 深度神经网络 | NA | NA |
11559 | 2024-08-07 |
PrCRS: a prediction model of severe CRS in CAR-T therapy based on transfer learning
2024-May-20, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-024-05804-8
PMID:38769505
|
研究论文 | 本文提出了一种基于迁移学习的深度学习预测模型PrCRS,用于预测CAR-T疗法中严重细胞因子释放综合征(CRS)的发生 | 本研究首次采用深度学习模型,特别是基于U-net和Transformer的模型,来更准确地预测严重CRS的发生,填补了该领域的研究空白 | NA | 开发一种能够提前预测严重CRS发生的模型,以预防其在CAR-T疗法中的不良事件 | CAR-T疗法中的严重细胞因子释放综合征(CRS) | 机器学习 | 血液恶性肿瘤和实体肿瘤 | 迁移学习 | U-net和Transformer | 数据 | 使用来自COVID-19患者的数据进行迁移学习 |
11560 | 2024-08-07 |
Ventilator-Associated Pneumonia Prediction Models Based on AI: Scoping Review
2024-May-14, JMIR medical informatics
IF:3.1Q2
DOI:10.2196/57026
PMID:38771220
|
综述 | 本文综述了基于人工智能的呼吸机相关肺炎预测模型,旨在为未来临床实践中早期识别高风险群体提供参考 | 人工智能模型相比传统方法具有更好的预测性能,有望在未来为呼吸机相关肺炎风险预测提供不可或缺的工具 | 当前研究主要处于模型构建和验证阶段,对于临床应用的实施和指导需要进一步研究 | 回顾基于人工智能的呼吸机相关肺炎预测模型,为临床实践中早期识别高风险群体提供参考 | 呼吸机相关肺炎的预测模型 | 机器学习 | 呼吸系统疾病 | 机器学习 | 随机森林模型 | 文本数据 | 5项研究的样本量小于1000 |