本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1161 | 2025-05-01 |
Deep learning-based fishing ground prediction with multiple environmental factors
2024-Nov, Marine life science & technology
IF:5.8Q1
DOI:10.1007/s42995-024-00222-4
PMID:39620085
|
research paper | 本研究开发了一种基于深度学习的多环境因素渔场预测模型,以西北太平洋的飞鱿鱼为例 | 采用改进的U-Net模型结合多种环境因素(海面温度、高度、盐度和叶绿素)进行渔场预测,显著提高了渔场中心区域的集中度 | 研究仅针对西北太平洋的飞鱿鱼渔场,模型在其他海域或鱼种的适用性有待验证 | 提高海洋经济鱼种渔场预测的准确性 | 西北太平洋的飞鱿鱼渔场 | machine learning | NA | 深度学习 | 改进的U-Net | 环境参数数据(海面温度、高度、盐度、叶绿素) | 2002-2019年7月至11月的数据用于训练,2020年数据用于测试 |
1162 | 2025-05-01 |
An artificial intelligence grading system of apical periodontitis in cone-beam computed tomography data
2024-10-01, Dento maxillo facial radiology
DOI:10.1093/dmfr/twae029
PMID:38960866
|
research paper | 开发了一种基于深度学习的根尖周炎分级系统,用于辅助初级医生诊断 | 提出了一种自创的PAINet算法,并在性能上优于经典算法和最新的Transformer模型 | 样本量较小,仅包含120张CBCT图像 | 开发并评估一种基于人工智能的根尖周炎分级系统 | 根尖周炎(AP)的CBCT图像 | digital pathology | apical periodontitis | deep learning | ResNet50/101/152, PAINet, Transformer-based models, attention models | image | 120张CBCT图像 |
1163 | 2025-05-01 |
Automatic classification and segmentation of multiclass jaw lesions in cone-beam CT using deep learning
2024-10-01, Dento maxillo facial radiology
DOI:10.1093/dmfr/twae028
PMID:38937280
|
研究论文 | 开发并验证了一种基于nnU-Net改进的深度学习模型,用于在锥束CT中对五类颌骨病变进行分类和分割 | 提出了一种改进的nnU-Net模型,能够同时完成颌骨病变的分类和分割任务,并在性能上超越口腔颌面放射科医生和外科医生 | 未提及样本的多样性和模型的泛化能力 | 提高颌骨病变在锥束CT中的自动分类和分割准确率 | 颌骨病变 | 数字病理 | 颌骨病变 | 锥束CT (CBCT) | nnU-Net | 医学影像 | 368例CBCT扫描(37,168张切片) |
1164 | 2025-05-01 |
Hybrid Deep Learning Approach for Traffic Speed Prediction
2024-10, Big data
IF:2.6Q2
DOI:10.1089/big.2021.0251
PMID:35108088
|
研究论文 | 提出了一种名为HDL4TSP的混合深度学习方法,用于预测城市各区域的交通速度 | 同时建模交通数据的空间和时间相关性,通过图卷积网络和ConvLSTM网络分别捕捉空间和时间维度的依赖关系 | 未提及具体的数据集规模或模型在不同城市或交通条件下的泛化能力 | 提高交通速度预测的准确性,以支持交通管理和驾驶路线规划 | 城市各区域的交通速度数据 | 机器学习 | NA | 深度学习 | 图卷积网络(GCN)、ConvLSTM | 交通速度数据 | 两个真实世界的数据集 |
1165 | 2025-05-01 |
A Network Intrusion Detection System Using Hybrid Multilayer Deep Learning Model
2024-10, Big data
IF:2.6Q2
DOI:10.1089/big.2021.0268
PMID:35704031
|
research paper | 提出了一种使用混合多层深度学习模型的网络入侵检测系统 | 结合多层卷积神经网络和softmax分类器,以及多层深度神经网络,提高了入侵检测的准确率 | 仅使用了NSL-KDD和KDDCUP'99两个数据集进行实验,可能在其他数据集上表现不同 | 提高网络入侵检测系统的准确率 | 网络流量数据 | machine learning | NA | 深度学习 | CNN, softmax classifier, deep neural network | 网络流量数据 | NSL-KDD和KDDCUP'99数据集 |
1166 | 2025-05-01 |
Detection and classification of mandibular fractures in panoramic radiography using artificial intelligence
2024-09-01, Dento maxillo facial radiology
DOI:10.1093/dmfr/twae018
PMID:38652576
|
研究论文 | 本研究评估了YOLOv5深度学习模型在全景X光片中检测不同类型下颌骨骨折的性能 | 使用YOLOv5模型对六种下颌骨骨折类型进行检测和分类,特别是在体和联合区域表现出色 | 在检测髁突头和髁突颈骨折时表现较差,精度和灵敏度较低 | 评估人工智能在全景X光片中检测和分类下颌骨骨折的潜力 | 下颌骨骨折的全景X光片 | 计算机视觉 | 下颌骨骨折 | 深度学习 | YOLOv5 | 图像 | 498张全景X光片,包含673处骨折 |
1167 | 2025-05-01 |
Accurate, automated classification of radiographic knee osteoarthritis severity using a novel method of deep learning: Plug-in modules
2024-Aug-13, Knee surgery & related research
IF:4.1Q1
DOI:10.1186/s43019-024-00228-3
PMID:39138550
|
研究论文 | 开发了一种基于深度学习的自动膝关节骨关节炎严重程度分类模型 | 使用插件模块(PIM)提升细粒度分类任务的性能,优于之前的深度学习模型 | 未来仍需改进,模型在KL等级1的分类准确率较低(43%) | 开发自动膝关节骨关节炎严重程度分类模型 | 膝关节骨关节炎的X光片 | 计算机视觉 | 骨关节炎 | 深度学习 | CNN或transformer-based网络与PIM模块集成 | 图像 | 训练集:Osteoarthritis Initiative数据集;测试集:17,040例(Multicenter Osteoarthritis Study) |
1168 | 2025-05-01 |
Automated cooling tower detection through deep learning for Legionnaires' disease outbreak investigations: a model development and validation study
2024-Jul, The Lancet. Digital health
DOI:10.1016/S2589-7500(24)00094-3
PMID:38906615
|
研究论文 | 本研究开发并验证了一种基于深度学习的计算机视觉模型,用于自动检测航空图像中的冷却塔,以加速军团病爆发的调查 | 使用YOLOv5和EfficientNet-b5两阶段模型自动检测冷却塔,显著提高了检测速度和准确性 | 模型在未训练过的城市(如波士顿和雅典)的表现略有下降,PPV和敏感度有所降低 | 开发一种自动检测冷却塔的深度学习模型,以加速军团病爆发的调查和源头控制 | 航空图像中的冷却塔 | 计算机视觉 | 军团病 | 深度学习 | YOLOv5, EfficientNet-b5 | 卫星图像 | 2051张包含7292个冷却塔的图像,测试数据集包含548张图像 |
1169 | 2025-05-01 |
DMAF-Net: deformable multi-scale adaptive fusion network for dental structure detection with panoramic radiographs
2024-06-28, Dento maxillo facial radiology
DOI:10.1093/dmfr/twae014
PMID:38518093
|
研究论文 | 提出了一种名为DMAF-Net的可变形多尺度自适应融合网络,用于全景X光片中的牙齿结构检测 | 改进了YOLO网络,通过不同模块增强特征提取能力,并利用自适应空间特征融合解决不同特征层尺度不匹配的问题 | NA | 提高全景X光片中牙齿结构问题检测的准确性 | 牙齿结构问题(阻生牙、缺失牙、种植体、冠修复体和根管治疗牙) | 计算机视觉 | 牙科疾病 | 深度学习 | DMAF-Net(基于YOLO改进) | 图像(全景X光片) | 1474张全景X光片 |
1170 | 2025-05-01 |
Development and external validation of deep learning clinical prediction models using variable-length time series data
2024-May-20, Journal of the American Medical Informatics Association : JAMIA
IF:4.7Q1
DOI:10.1093/jamia/ocae088
PMID:38679906
|
研究论文 | 比较和外部验证了用于可变长度时间序列数据的深度学习模型架构和数据转换方法在三个临床任务中的表现 | 比较了三种特征工程方法和三种深度学习架构在临床任务中的表现,发现LSTM/GRU架构与PLE-DT转换数据结合在所有任务中表现最佳 | 研究仅基于两个医疗中心的数据,可能缺乏更广泛的代表性 | 开发和外部验证深度学习临床预测模型,用于预测临床恶化、严重急性肾损伤和疑似感染 | 医院住院患者 | 机器学习 | 急性肾损伤、感染 | 深度学习 | LSTM/GRU, TDW-CNN, 时间卷积网络 | 时间序列数据 | 训练集373,825例住院患者,测试集256,128例住院患者 |
1171 | 2025-05-01 |
Improving resolution of panoramic radiographs: super-resolution concept
2024-04-29, Dento maxillo facial radiology
DOI:10.1093/dmfr/twae009
PMID:38483289
|
研究论文 | 本研究利用深度学习超分辨率技术提升牙科全景X光片的分辨率,以支持更精确的诊断和治疗计划 | 采用四种先进的深度学习模型(SRCNN、Efficient Sub-Pixel CNN、SRGAN和Autoencoder)进行牙科图像超分辨率重建,并比较其性能 | 当图像缩放比例较高时,性能会下降 | 提升牙科全景X光片的分辨率,以改善诊断和治疗计划的精确性 | 牙科全景X光片 | 计算机视觉 | 牙科疾病 | 深度学习超分辨率技术 | SRCNN, Efficient Sub-Pixel CNN, SRGAN, Autoencoder | 图像 | 1714张全景X光片(训练集1364张,测试集350张) |
1172 | 2025-05-01 |
Artificial intelligence system for automatic maxillary sinus segmentation on cone beam computed tomography images
2024-04-29, Dento maxillo facial radiology
DOI:10.1093/dmfr/twae012
PMID:38502963
|
研究论文 | 开发基于nnU-Net v2的人工智能模型,用于在锥形束计算机断层扫描(CBCT)图像中自动分割上颌窦 | 使用nnU-Net v2深度学习模型实现上颌窦的自动分割,并在CBCT图像上评估其性能 | 样本量较小(101例CBCT扫描),可能影响模型的泛化能力 | 开发并评估一种自动分割上颌窦的人工智能模型 | 上颌窦 | 计算机视觉 | NA | CBCT | nnU-Net v2 | 图像 | 101例CBCT扫描(80例训练,11例验证,10例测试) |
1173 | 2025-05-01 |
Histopathological evaluation of abdominal aortic aneurysms with deep learning
2024-Apr-24, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.04.23.24306178
PMID:38712033
|
研究论文 | 利用深度学习技术对腹主动脉瘤的组织病理学标本进行数字全切片图像分析 | 首次在血管病理学中全面评估深度学习技术的应用,特别是在预测炎症特征、纤维化等级和剩余弹性纤维方面 | 研究仅基于三个欧洲中心的369名患者样本,可能存在样本多样性和代表性的限制 | 探索深度学习在血管疾病计算病理学中的应用,以改善对腹主动脉瘤病理生理学的理解和治疗策略的个性化 | 腹主动脉瘤患者的组织病理学标本 | 数字病理学 | 心血管疾病 | 深度学习 | NA | 图像 | 369名患者的腹主动脉瘤样本 |
1174 | 2025-05-01 |
An Intelligent Channel Estimation Algorithm Based on Extended Model for 5G-V2X
2024-04, Big data
IF:2.6Q2
DOI:10.1089/big.2022.0029
PMID:36848263
|
研究论文 | 提出了一种基于扩展模型的智能信道估计算法,用于5G-V2X车联网系统 | 基于信道脉冲响应的稀疏性建立适用于高速移动场景的扩展模型,并设计了一种基于深度学习的信道估计算法,结合多层CNN和双向GRU提高估计精度 | 未提及实际场景测试结果或与其他深度学习方法的对比 | 提高5G-V2X车联网系统的信道估计精度和降低误码率 | 5G-V2X车联网系统的信道估计 | 机器学习 | NA | 深度学习 | CNN, 双向GRU | 信道数据 | NA |
1175 | 2025-05-01 |
Development and validation of a deep learning system for detection of small bowel pathologies in capsule endoscopy: a pilot study in a Singapore institution
2024-03-01, Singapore medical journal
IF:1.7Q2
|
研究论文 | 开发并验证了一种用于胶囊内窥镜中小肠病理检测的深度学习系统 | 在新加坡机构中首次应用深度学习模型进行胶囊内窥镜图像分析,提出了一种结合预训练模型和本地数据的方法 | 样本量较小(总样本72例),且仅在单一机构进行验证 | 提高胶囊内窥镜诊断效率,缩短诊断时间 | 小肠胶囊内窥镜图像 | 计算机视觉 | 小肠疾病 | 胶囊内窥镜 | CNN(基于ResNet50架构) | 图像 | 72例(43例来自开源数据集Kvasir-Capsule,29例为本地收集数据) |
1176 | 2025-04-29 |
Deep learning-based classification of gallbladder lesions in patients with non-diagnostic (GB-RADS 0) ultrasound
2024-Dec, Clinical and experimental hepatology
IF:1.5Q3
DOI:10.5114/ceh.2024.145424
PMID:40290528
|
研究论文 | 本研究评估了深度学习模型在非诊断性超声图像中对胆囊病变进行分类的诊断性能 | 首次在非诊断性胆囊超声图像中应用多种深度学习模型(包括CNN、Transformer及混合模型)进行良恶性分类 | 模型性能仍需进一步提升以达到临床应用标准,测试样本量较小(26名患者) | 提高非诊断性胆囊超声(GB-RADS 0)中病变的良恶性分类准确性 | 因胆囊因素导致超声检查非诊断性的患者 | 数字病理 | 胆囊疾病 | 超声成像 | ResNet50, GBCNet, ViT, RadFormer, MedViT | 图像 | 训练集1004张图像,验证集251张图像,测试集26名患者(304张图像) |
1177 | 2025-04-27 |
CT-Based Lung Size Matching in Delayed Chest Closure for Systemic Sclerosis Lung Transplantation
2024-Dec, Clinical transplantation
IF:1.9Q3
DOI:10.1111/ctr.70041
PMID:39601250
|
research paper | 本研究探讨了系统性硬化症患者肺移植中延迟胸廓闭合的临床结果、风险因素及基于CT的肺大小匹配参数 | 首次在系统性硬化症患者中研究延迟胸廓闭合的临床结果,并利用深度学习算法自动计算CT影像中的肺和胸腔体积 | 研究为回顾性设计,样本量相对较小(92例患者) | 评估系统性硬化症患者肺移植中延迟胸廓闭合的临床效果和预测因素 | 92例接受双侧肺移植的系统性硬化症患者 | digital pathology | systemic sclerosis | CT成像和深度学习算法 | 深度学习算法(未指定具体模型) | CT影像和临床数据 | 92例系统性硬化症患者(年龄51±10岁,61%为女性) |
1178 | 2025-04-27 |
Advances in artificial intelligence-based technologies for increasing the quality of medical products
2024-Nov-30, Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences
IF:2.5Q3
DOI:10.1007/s40199-024-00548-5
PMID:39613923
|
综述 | 本文综述了人工智能在提高医疗产品质量方面的最新技术进展 | 探讨了AI在预测药物靶蛋白行为、优化药物物理化学特性及加速产品开发方面的创新应用 | 未具体说明AI技术在医疗产品应用中面临的技术或伦理挑战 | 概述AI技术在医疗领域中的应用及其对提高产品质量、成本效益和安全性的潜力 | 医疗产品及其开发过程 | 人工智能在医学中的应用 | NA | 机器学习(ML)、深度学习 | NA | NA | NA |
1179 | 2025-04-27 |
High-throughput optimized prime editing mediated endogenous protein tagging for pooled imaging of protein localization
2024-Sep-17, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.16.613361
PMID:39345511
|
研究论文 | 开发了一种基于prime editing的高通量内源蛋白标记方法,用于大规模测量蛋白质亚细胞定位 | 首次将prime editing与光学读出和测序技术结合,实现了蛋白质组组织的大规模并行分析 | 仅测试了60种蛋白质,覆盖范围有限 | 开发一种可扩展的蛋白质亚细胞定位测量技术 | 60种具有不同定位模式的内源蛋白质 | 数字病理学 | NA | prime editing, 高通量测序, 深度学习图像分析 | 深度学习 | 图像, 测序数据 | 17,280个pegRNAs设计的文库,覆盖60种蛋白质 |
1180 | 2025-04-27 |
Fully Automated OCT-based Tissue Screening System
2024-May-15, ArXiv
PMID:38800655
|
research paper | 介绍了一种基于光学相干断层扫描(OCT)的全自动组织筛查系统,用于体外组织培养的高通量筛选应用 | 系统配备了定制设计的电动平台和组织检测能力,结合基于Transformer的深度学习分割算法,实现了自动化、连续成像和高效读取 | 目前仅在小鼠视网膜变性模型的视网膜外植体培养中进行了验证,尚未在其他组织或模型中测试 | 开发一种高效、可靠的全自动组织筛查系统,以推动药物发现及相关研究领域的发展 | 小鼠视网膜变性模型的视网膜外植体培养 | digital pathology | retinal degeneration | optical coherence tomography (OCT) | Transformer-based deep learning segmentation algorithms | image | 小鼠视网膜外植体培养样本(具体数量未提及) |