深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202412] [清除筛选条件]
当前共找到 12060 篇文献,本页显示第 1421 - 1440 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1421 2025-03-01
Deep learning for transesophageal echocardiography view classification
2024-01-02, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种基于深度学习的多类别经食管超声心动图(TEE)视图分类模型,用于结构化术中和术中TEE成像数据 创新点在于开发了一个能够准确分类标准化TEE视图的深度学习模型,并进行了外部验证 研究的局限性在于仅使用了来自两个医疗中心的TEE视频数据进行训练和验证,样本来源较为单一 研究目的是通过深度学习技术对术中和术中TEE成像数据进行结构化分类 研究对象是术中和术中TEE视频数据 计算机视觉 心血管疾病 深度学习 卷积神经网络(CNN) 视频 来自Cedars-Sinai Medical Center(CSMC)和Stanford University Medical Center(SUMC)的TEE视频数据
1422 2025-02-28
MCNN-AAPT: accurate classification and functional prediction of amino acid and peptide transporters in secondary active transporters using protein language models and multi-window deep learning
2024-Nov-22, Journal of biomolecular structure & dynamics IF:2.7Q2
研究论文 本研究开发了一个结合预训练蛋白质语言模型和深度学习技术的计算框架,用于分类次级主动转运蛋白中的氨基酸和肽转运蛋白,并预测其与溶质载体蛋白的功能关联 首次将预训练蛋白质语言模型与多窗口深度学习技术结合,用于次级主动转运蛋白的功能分类和溶质载体蛋白的预测 研究仅基于已知的次级主动转运蛋白数据集,可能无法涵盖所有未知的转运蛋白类型 开发一个计算框架,用于分类和预测次级主动转运蛋白的功能 次级主动转运蛋白,特别是氨基酸和肽转运蛋白 生物信息学 癌症 蛋白质语言模型(ProtTrans, ESM-1b, ESM-2),深度学习 深度学习神经网络 蛋白质序列数据 448个次级主动转运蛋白,包括36个溶质载体蛋白
1423 2025-02-28
In vivo evaluation of complex polyps with endoscopic optical coherence tomography and deep learning during routine colonoscopy: a feasibility study
2024-11-14, Scientific reports IF:3.8Q1
研究论文 本研究评估了在常规结肠镜检查中使用内窥镜光学相干断层扫描(OCT)和深度学习技术评估复杂息肉的可行性 结合OCT和深度学习技术,提供了一种新的非侵入性方法来评估结肠息肉的浸润深度,并在多个组织学亚型之间进行了细致的比较 样本量较小(35个息肉,32名患者),且为初步临床研究,需要更大规模的研究来验证结果 评估内窥镜OCT探头在常规结肠镜检查中评估结肠息肉的可行性 接受内窥镜治疗的大型结肠息肉患者 数字病理学 结肠癌 内窥镜光学相干断层扫描(OCT) 深度学习模型 图像 35个息肉,32名患者
1424 2024-11-17
Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology
2024-Nov-08, NPJ precision oncology IF:6.8Q1
研究论文 开发了一种基于注意力机制的多实例学习和自监督学习的深度学习模型,用于从数字病理学中对神经母细胞瘤进行形态学分类和分子特征分析 首次使用注意力机制的多实例学习和自监督学习方法,结合H&E染色全切片图像,对神经母细胞瘤进行病理分类和MYCN扩增状态评估 NA 开发一种人工智能辅助的神经母细胞瘤分类方法 神经母细胞瘤的病理分类和MYCN扩增状态评估 数字病理学 神经母细胞瘤 注意力机制的多实例学习 (aMIL) 和自监督学习 (SSL) 深度学习模型 图像 迄今为止报道的最大队列的全切片图像
1425 2025-02-28
Artificial Intelligence for Early Detection of Pediatric Eye Diseases Using Mobile Photos
2024-08-01, JAMA network open IF:10.5Q1
研究论文 本研究开发了一种基于深度学习的AI模型,用于通过移动设备拍摄的照片识别儿童眼病,包括近视、斜视和上睑下垂 利用AI技术从移动设备拍摄的照片中识别儿童眼病,提供了一种便捷的家庭筛查方法,突破了传统医院筛查的局限 研究样本量相对较小,且仅在单一医院进行,可能影响模型的泛化能力 开发一种AI模型,用于早期检测儿童眼病 儿童眼病(近视、斜视和上睑下垂) 计算机视觉 儿童眼病 深度学习 深度学习模型 图像 476名患者的1419张图像
1426 2024-10-24
Identification of an ANCA-Associated Vasculitis Cohort Using Deep Learning and Electronic Health Records
2024-Jun-10, medRxiv : the preprint server for health sciences
研究论文 本文利用深度学习模型分析电子健康记录,以更准确地识别ANCA相关性血管炎病例 本文提出了一种基于深度学习的模型,用于分析电子健康记录,以更准确地识别ANCA相关性血管炎病例,相比传统的基于规则的方法,该模型能够发现更多的病例 本文未详细讨论模型的泛化能力和在其他数据集上的表现 开发一种更准确的方法来识别ANCA相关性血管炎病例 ANCA相关性血管炎病例的识别 机器学习 其他疾病 深度学习 深度学习算法 文本 三个数据集分别包含6,000、3,008和7,500个笔记部分,以及2,000个随机选择的样本
1427 2025-02-28
Identification and Structural Characterization of Twisted Atomically Thin Bilayer Materials by Deep Learning
2024-Mar-06, Nano letters IF:9.6Q1
研究论文 本文介绍了一种利用深度学习技术识别和结构表征扭曲原子薄双层材料的方法 使用语义分割卷积神经网络(CNN)快速准确地识别MoS薄片的厚度,并训练第二个CNN模型预测CVD生长的双层薄片的扭曲角度 NA 开发一种可扩展的方法,用于自动化检测扭曲原子薄CVD生长的双层材料 扭曲双层石墨烯和过渡金属二硫化物 计算机视觉 NA 光学显微镜、化学气相沉积(CVD)、二次谐波生成、拉曼光谱 CNN 图像 超过10,000张合成图像
1428 2025-02-28
Predicting epidermal growth factor receptor mutation status of lung adenocarcinoma based on PET/CT images using deep learning
2024, Frontiers in oncology IF:3.5Q2
研究论文 本研究旨在开发基于18F-FDG PET/CT图像的深度学习模型,用于预测肺腺癌(LUAD)患者的表皮生长因子受体(EGFR)突变状态 利用深度学习模型预测EGFR突变状态,结合PET/CT图像和临床特征,提高了预测的准确性 研究仅基于两个机构的430名患者,样本量可能不足以代表所有肺腺癌患者 开发预测肺腺癌患者EGFR突变状态的深度学习模型 430名非小细胞肺癌患者 计算机视觉 肺癌 18F-FDG PET/CT成像 Inception V3 图像 430名非小细胞肺癌患者
1429 2025-02-27
SegCSR: Weakly-Supervised Cortical Surfaces Reconstruction from Brain Ribbon Segmentations
2024-Dec-10, bioRxiv : the preprint server for biology
研究论文 本文提出了一种基于弱监督学习的皮质表面重建方法,通过大脑MRI带状分割来重建多个皮质表面 该方法通过联合学习微分同胚流来对齐皮质带状分割图的边界,避免了传统方法中对伪地面真值的依赖,减少了数据集特定的挑战和训练数据准备的复杂性 方法在深度皮质沟的挑战性区域可能仍存在一定的局限性 研究目的是开发一种新的皮质表面重建方法,以减少对伪地面真值的依赖并提高重建精度 大脑MRI带状分割数据 计算机视觉 NA 深度学习 NA MRI图像 两个大规模大脑MRI数据集
1430 2025-02-27
AESurv: autoencoder survival analysis for accurate early prediction of coronary heart disease
2024-Sep-23, Briefings in bioinformatics IF:6.8Q1
研究论文 本文介绍了一种名为AESurv的深度学习自编码器生存分析模型,用于基于高维DNA甲基化和临床特征准确预测冠心病(CHD)的发生时间 开发了一种新的深度学习自编码器生存分析模型(AESurv),通过学习参与者的低维表示来进行时间到事件的CHD预测,相较于其他生存分析模型表现更优 NA 开发一种能够准确预测冠心病发生时间的模型,以协助早期预测和干预策略 美国印第安人成年人(Strong Heart Study cohort)和绝经后妇女(Women's Health Initiative cohort) 机器学习 心血管疾病 DNA甲基化分析 自编码器(Autoencoder) DNA甲基化数据和临床数据 两个队列研究:Strong Heart Study cohort和Women's Health Initiative cohort
1431 2025-02-27
DeepComBat: A statistically motivated, hyperparameter-robust, deep learning approach to harmonization of neuroimaging data
2024-Aug-01, Human brain mapping IF:3.5Q1
研究论文 本文介绍了一种名为DeepComBat的深度学习协调方法,用于消除神经影像数据中的批次效应 DeepComBat结合了统计方法和深度学习的优势,能够处理特征间的多变量关系,同时放松了之前深度学习协调方法的强假设 NA 消除神经影像数据中的批次效应,提高数据的可重复性 神经影像数据 计算机视觉 老年疾病 深度学习 条件变分自编码器 图像 认知老化队列的皮层厚度测量数据
1432 2025-02-27
Patients Perceptions of Artificial Intelligence in a Deep Learning-Assisted Diabetic Retinopathy Screening Event: A Real-World Assessment
2024-May, Journal of diabetes science and technology IF:4.1Q2
研究论文 本文通过调查糖尿病患者对人工智能辅助糖尿病视网膜病变筛查的看法,评估了患者对AI在医疗中应用的感知 在真实世界的糖尿病视网膜病变筛查活动中,首次调查了患者对AI的感知和态度 样本主要为初级医疗保健中的低教育水平糖尿病患者,可能影响结果的普遍性 评估糖尿病患者对AI在医疗中应用的感知和态度 糖尿病患者 数字病理 糖尿病 深度学习 NA 调查数据 NA
1433 2025-02-27
Among Artificial Intelligence/Machine Learning Methods, Automated Gradient-Boosting Models Accurately Score Intraoral Plaque in Non-Standardized Images
2024, Journal of the California Dental Association
研究论文 本文开发并测试了用于非标准化口腔内菌斑图像自动选择和评分的模型,旨在提高预防试验中的主要结果测量准确性 使用梯度提升模型在非标准化图像中准确评分口腔内菌斑,避免了深度学习模型的高计算和财务成本 未使用深度学习模型,可能限制了模型的复杂性和潜在性能 开发并测试自动图像选择和口腔内菌斑评分模型,以提高预防试验中的主要结果测量准确性 435张来自UCSF/UCLA临床试验的照片中的1650颗菌斑显示的乳牙(牙齿D, E, F, G) 计算机视觉 NA 机器学习算法,包括支持向量机-高斯模型和梯度提升模型 支持向量机-高斯模型,梯度提升分类和回归模型 图像 435张照片中的1650颗乳牙
1434 2025-02-26
scMGATGRN: a multiview graph attention network-based method for inferring gene regulatory networks from single-cell transcriptomic data
2024-Sep-23, Briefings in bioinformatics IF:6.8Q1
研究论文 本文提出了一种基于多视图图注意力网络的新方法scMGATGRN,用于从单细胞转录组数据中推断基因调控网络 scMGATGRN模型结合了图注意力网络(GAT)、多视图模型和视图级注意力机制,能够充分利用图拓扑信息和高阶邻居信息,从而更有效地推断基因调控网络 尽管scMGATGRN在多个基准数据集上表现出色,但其在更广泛和多样化的数据集上的泛化能力仍需进一步验证 研究目标是开发一种更有效的深度学习方法,用于从单细胞转录组数据中推断基因调控网络 研究对象是单细胞转录组数据,特别是来自五种细胞系(两种人类和三种小鼠)的七个基准单细胞RNA测序数据集 机器学习 NA 单细胞RNA测序(scRNA-seq) 多视图图注意力网络(scMGATGRN) 单细胞转录组数据 七个基准单细胞RNA测序数据集,涉及五种细胞系(两种人类和三种小鼠)
1435 2025-02-26
Deep learning-based image quality assessment: impact on detection accuracy of prostate cancer extraprostatic extension on MRI
2024-08, Abdominal radiology (New York)
研究论文 本研究使用基于深度学习的AI算法评估前列腺癌MRI图像质量对前列腺外扩展(EPE)检测准确性的影响 首次使用深度学习AI算法对前列腺MRI图像质量进行分类,并证明高质量T2WI图像与EPE病理预测准确性相关 研究为单机构回顾性研究,样本量有限,且仅使用了一种AI算法进行图像质量分类 评估前列腺MRI图像质量对EPE检测准确性的影响 前列腺癌患者 数字病理学 前列腺癌 深度学习 AI算法 MRI图像 773名患者
1436 2025-02-26
Deep learning-accelerated T2WI: image quality, efficiency, and staging performance against BLADE T2WI for gastric cancer
2024-08, Abdominal radiology (New York)
研究论文 本研究比较了深度学习加速的单次屏息T2加权磁共振成像(DLSB-T2WI)与BLADE-T2WI在胃癌成像中的图像质量、效率和诊断性能 首次将深度学习加速技术应用于单次屏息T2加权磁共振成像,显著缩短了成像时间并提高了图像质量 研究样本量相对较小,且仅在单一中心进行,可能影响结果的普遍性 比较DLSB-T2WI与BLADE-T2WI在胃癌成像中的性能 112名胃癌患者 数字病理 胃癌 T2加权磁共振成像(T2WI) 深度学习模型 图像 112名胃癌患者
1437 2025-02-26
Comparison of model-based versus deep learning-based image reconstruction for thin-slice T2-weighted spin-echo prostate MRI
2024-08, Abdominal radiology (New York)
研究论文 本文比较了基于模型的图像重建(MBIR)与新开发的基于深度学习的图像重建方法,在1毫米高分辨率T2加权自旋回波前列腺MRI中提供改进的信噪比(SNR) 本文的创新点在于首次将深度学习技术应用于1毫米高分辨率T2加权自旋回波前列腺MRI的图像重建,并展示了其在信噪比提升方面的优势 研究的局限性在于深度学习重建在过高水平(DL High)时,放射学清晰度和对比度保真度会降低 研究目的是比较不同图像重建方法在前列腺MRI中的性能,特别是信噪比的提升 研究对象为17名临床需要进行前列腺MRI的患者 医学影像 前列腺癌 T2加权自旋回波MRI 深度学习 图像 17名患者
1438 2025-02-26
High-throughput classification of S. cerevisiae tetrads using deep learning
2024-07, Yeast (Chichester, England)
研究论文 本文开发了一种基于深度学习的图像识别和分类管道,用于高通量检测和分类酿酒酵母四分体的减数分裂交叉 利用深度学习技术自动化分析酿酒酵母四分体的减数分裂交叉,提高了分析效率和准确性 研究主要针对酿酒酵母,可能不直接适用于其他生物体 自动化分析酿酒酵母四分体的减数分裂交叉,以加速发现与减数分裂重组相关的新基因 酿酒酵母四分体 计算机视觉 NA 深度学习 CNN 图像 大量野生型和特定基因敲除突变体的图像数据集
1439 2025-02-26
A deep learning approach for diagnosis of schizophrenia disorder via data augmentation based on convolutional neural network and long short-term memory
2024-Jul, Biomedical engineering letters IF:3.2Q2
研究论文 本文提出了一种基于卷积神经网络和长短期记忆网络的深度学习方法,通过数据增强技术自动诊断精神分裂症 提出了一种端到端的深度学习方法,结合15层CNN和16层CNN-LSTM网络,利用数据增强技术提高数据多样性,实现了高精度的精神分裂症诊断 未提及具体的数据集来源和样本的多样性,可能影响模型的泛化能力 开发一种自动诊断精神分裂症的工具,帮助精神病医生进行早期诊断 精神分裂症患者的脑电图(EEG)信号 机器学习 精神分裂症 生成对抗网络(GAN)用于数据增强 CNN, LSTM 脑电图(EEG)信号 大规模EEG数据集,具体样本数量未提及
1440 2025-02-26
Black Box Warning: Large Language Models and the Future of Infectious Diseases Consultation
2024-04-10, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America IF:8.2Q1
评论 本文探讨了大型语言模型(LLMs)在传染病咨询中的潜在应用及其局限性 提出了LLMs在医疗咨询中的潜在应用,并强调了其当前的技术限制和伦理问题 LLMs存在频繁的虚构、缺乏上下文意识、训练数据和方法不透明以及容易再现偏见等问题 探讨LLMs在传染病临床咨询中的应用前景及其潜在风险 大型语言模型(LLMs) 自然语言处理 传染病 深度学习算法 LLMs 文本 NA
回到顶部