本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1441 | 2025-02-26 |
Exploring the application of knowledge transfer to sports video data
2024, Frontiers in sports and active living
IF:2.3Q2
DOI:10.3389/fspor.2024.1460429
PMID:39989920
|
研究论文 | 本研究探讨了知识转移在体育视频数据中的应用,特别是零样本学习(ZSL)和球员重识别技术 | 利用预训练的重识别模型提取特征嵌入,在零样本学习环境下评估其在橄榄球联赛和篮网球中的应用,展示了在动态体育环境中部分模型的有效性 | 非部分模型在背景干扰下表现不佳,且需要大量资源来重现结果 | 探索更高效的方法,以在不同体育项目中应用AI和计算机视觉技术,减少数据标注和模型训练成本 | 橄榄球联赛和篮网球的体育视频数据 | 计算机视觉 | NA | 零样本学习(ZSL) | 预训练的重识别模型 | 视频 | 橄榄球联赛近35,000帧和篮网球近14,000帧的广播视频剪辑 |
1442 | 2025-02-26 |
Multiomics Research: Principles and Challenges in Integrated Analysis
2024, Biodesign research
DOI:10.34133/bdr.0059
PMID:39990095
|
综述 | 本文综述了多组学研究的基本原则和挑战,强调了数据整合在揭示生物系统复杂相互作用和调控机制中的必要性 | 探讨了深度学习、图神经网络(GNNs)和生成对抗网络(GANs)等最新计算方法在多组学数据合成和解释中的应用,并提出了大语言模型在多组学分析中的潜力 | 需要大量的计算资源和复杂的模型调优 | 指导研究人员在多组学研究中导航原则和挑战,以促进整合生物分析的发展 | 多组学数据 | 生物信息学 | NA | 多组学技术(基因组学、转录组学、蛋白质组学、代谢组学等) | 深度学习、图神经网络(GNNs)、生成对抗网络(GANs) | 多组学数据 | NA |
1443 | 2025-02-25 |
Construction of an antidepressant priority list based on functional, environmental, and health risks using an interpretable mixup-transformer deep learning model
2024-08-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2024.134651
PMID:38843640
|
研究论文 | 本研究构建了一个基于功能、环境及健康风险的抗抑郁药物优先级筛选系统(ADRank),并采用改进的mixup-transformer深度学习模型进行分类,以提高分类准确性和可靠性 | 采用改进的mixup-transformer深度学习模型,相较于随机森林模型,分类准确性提高了23.25%,可靠性提高了80% | 研究中未明确提及样本量及数据来源的具体细节 | 构建抗抑郁药物的风险优先级筛选系统,以识别和管理抗抑郁药物的风险 | 抗抑郁药物(AD) | 机器学习 | NA | 深度学习 | mixup-transformer | NA | NA |
1444 | 2025-02-25 |
Early detection of nicosulfuron toxicity and physiological prediction in maize using multi-branch deep learning models and hyperspectral imaging
2024-08-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2024.134723
PMID:38815392
|
研究论文 | 本研究利用多分支深度学习模型和高光谱成像技术,开发了HerbiNet模型,用于早期检测玉米中nicosulfuron除草剂的毒性 | 开发了HerbiNet和HerbiNet-Lite模型,能够早期准确预测玉米中nicosulfuron的毒性,并在不同年份和季节的数据集上表现出更高的泛化能力 | 研究仅针对nicosulfuron一种除草剂,未涉及其他除草剂的毒性检测 | 开发早期检测玉米中除草剂毒性的方法,以保护玉米生产和田间环境 | 玉米作物及其高光谱图像 | 计算机视觉 | NA | 高光谱成像 | 多分支深度学习模型 | 图像 | NA |
1445 | 2025-02-25 |
Deep Learning Analysis of Surgical Video Recordings to Assess Nontechnical Skills
2024-07-01, JAMA network open
IF:10.5Q1
|
研究论文 | 本研究探讨了利用手术视频记录中的运动特征自动评估心脏手术过程中非技术技能的可行性 | 首次使用深度学习技术从手术视频中提取运动特征,以自动评估手术团队的非技术技能 | 研究仅在一家医院进行,且样本量较小,需要进一步在不同医院和专科中验证结果 | 探索自动评估手术室非技术技能的方法,以提高手术表现和患者安全 | 心脏手术过程中的手术团队 | 计算机视觉 | 心血管疾病 | OpenPose库用于视频分析 | 深度学习 | 视频 | 30例完整的心脏手术过程 |
1446 | 2025-02-25 |
CEUS in prediction of early recurrence of hepatocellular carcinoma after curative resection and to stratify the risk of early recurrence: a retrospective observational study
2024-06, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04252-5
PMID:38557770
|
研究论文 | 本研究探讨了术前对比增强超声(CEUS)在预测肝细胞癌(HCC)根治性切除术后早期复发(ER)中的作用,并分层了ER的风险 | 首次使用CEUS结合DL放射组学复发评分来预测HCC的早期复发,并基于预测因子数量对患者进行风险分层 | 研究为回顾性观察研究,可能存在选择偏差 | 预测肝细胞癌根治性切除术后的早期复发并分层风险 | 556名在2011年1月至2018年12月期间接受根治性切除术的HCC患者 | 数字病理 | 肝细胞癌 | 对比增强超声(CEUS) | 深度学习(DL) | 图像 | 556名HCC患者 |
1447 | 2025-02-25 |
Deep learning-based image reconstruction for the multi-arterial phase images: improvement of the image quality to assess the small hypervascular hepatic tumor on gadoxetic acid-enhanced liver MRI
2024-06, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04236-5
PMID:38512517
|
研究论文 | 本文评估了基于深度学习的图像重建技术在多动脉期磁共振成像(MA-MRI)中对小血管性肝肿瘤图像质量的提升效果 | 首次将深度学习技术应用于多动脉期磁共振成像的图像重建,显著提高了图像质量 | 研究样本量较小,且为回顾性研究,可能影响结果的普遍性 | 评估深度学习图像重建技术在多动脉期磁共振成像中的应用效果 | 55名患有小血管性肝肿瘤的成年患者 | 计算机视觉 | 肝肿瘤 | 深度学习图像重建 | 深度学习模型 | 图像 | 55名成年患者 |
1448 | 2025-02-25 |
Noninvasive diagnosis of liver cirrhosis: qualitative and quantitative imaging biomarkers
2024-06, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04225-8
PMID:38372765
|
综述 | 本文综述了用于非侵入性诊断肝硬化的定性和定量影像生物标志物,并讨论了评估肝功能和预后的挑战及未来方向 | 介绍了影像组学和深度学习在提高诊断准确性并减少主观性方面的应用 | 部分定量影像特征尚未在临床实践中应用 | 探讨非侵入性诊断肝硬化的影像生物标志物及其在评估肝功能和预后中的应用 | 肝硬化患者 | 数字病理学 | 肝硬化 | 超声、CT、MRI、弹性成像技术、影像组学、深度学习 | NA | 影像数据 | NA |
1449 | 2025-02-25 |
Detection of urinary tract stones on submillisievert abdominopelvic CT imaging with deep-learning image reconstruction algorithm (DLIR)
2024-06, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04223-w
PMID:38470506
|
研究论文 | 本研究评估了使用深度学习图像重建算法(DLIR)在亚毫西弗腹部盆腔CT成像中检测尿路结石的诊断性能和图像质量 | 首次在亚毫西弗腹部盆腔CT成像中应用深度学习图像重建算法(DLIR),并评估其在尿路结石检测中的诊断性能和图像质量 | 样本量较小,仅57名患者参与研究 | 评估亚毫西弗腹部盆腔CT成像在尿路结石检测中的诊断性能和图像质量 | 57名疑似尿路结石患者 | 数字病理 | 尿路结石 | CT成像 | 深度学习图像重建算法(DLIR) | 图像 | 57名患者,共检测到266颗结石 |
1450 | 2025-02-24 |
Utilizing retinal arteriole/venule ratio to estimate intracranial pressure
2024-Nov-08, Acta neurochirurgica
IF:1.9Q2
DOI:10.1007/s00701-024-06343-0
PMID:39514087
|
研究论文 | 本研究探讨了利用视网膜动静脉比率(A/V比率)无创估计颅内压(ICP)的可行性,并加入了眼内压(IOP)的考量 | 首次在神经重症监护病房(NICU)环境中,结合眼内压(IOP)使用深度学习算法分析眼底镜检查视频,以无创方式估计颅内压(ICP) | 图像质量和诊断特异性仍存在挑战,需要更大规模的多中心研究来验证该技术的临床适用性 | 研究无创估计颅内压(ICP)的方法,以减少侵入性测量带来的风险 | 神经重症监护病房(NICU)中的成年患者,格拉斯哥昏迷评分(GCS)≤8分,并接受侵入性压力监测 | 数字病理学 | 脑损伤 | 深度学习算法 | 混合效应线性回归模型 | 视频 | 40名患者,其中15名纳入最终分析 |
1451 | 2025-02-24 |
A DEEP LEARNING FRAMEWORK TO CHARACTERIZE NOISY LABELS IN EPILEPTOGENIC ZONE LOCALIZATION USING FUNCTIONAL CONNECTIVITY
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
DOI:10.1109/isbi56570.2024.10635583
PMID:39464200
|
研究论文 | 本文开发了一个深度学习框架,用于在药物难治性局灶性癫痫患者的静息态功能磁共振成像(rs-fMRI)中定位致痫区(EZ),并处理训练和测试中的噪声标签问题 | 提出了一个多任务深度学习框架,能够同时识别噪声标签的概率和每个感兴趣区域(ROI)的定位预测 | 由于临床协议的限制,具有可靠EZ标签的数据集稀缺,且使用的标签可能包含噪声 | 开发一个数学框架来表征EZ定位中的噪声标签,并提高定位性能 | 药物难治性局灶性癫痫患者 | 数字病理学 | 癫痫 | rs-fMRI | 多任务深度学习框架 | 图像 | 模拟数据集(来自人类连接组计划)和临床癫痫数据集 |
1452 | 2025-02-24 |
High Resolution Multi-delay Arterial Spin Labeling with Transformer based Denoising for Pediatric Perfusion MRI
2024-Mar-06, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.03.04.24303727
PMID:38496517
|
研究论文 | 本文介绍了一种高分辨率多延迟动脉自旋标记(MDASL)协议,并提出了基于Transformer的深度学习模型,用于儿科灌注MRI的去噪 | 提出了基于Transformer的深度学习模型,结合k空间加权图像平均(KWIA)去噪图像作为参考,有效提高了多延迟ASL图像的信噪比(SNR)和测试-重测重复性 | 研究样本仅限于8至17岁的典型发育儿童,未涵盖其他年龄段或特殊发育情况的儿童 | 提高儿科灌注MRI中多延迟动脉自旋标记(MDASL)图像的质量和重复性 | 21名8至17岁的典型发育儿童 | 医学影像 | NA | 多延迟动脉自旋标记(MDASL),k空间加权图像平均(KWIA) | Transformer | MRI图像 | 21名8至17岁的典型发育儿童 |
1453 | 2025-02-24 |
Deep learning performance on MRI prostate gland segmentation: evaluation of two commercially available algorithms compared with an expert radiologist
2024-Jan, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.1.015002
PMID:38404754
|
研究论文 | 本研究评估了两种商用深度学习算法在MRI前列腺分割中的表现,并与专家放射科医生的手动分割进行了比较 | 在真实临床环境中评估商用AI模型的前列腺分割性能,填补了现有研究的空白 | 未对深度学习算法进行内部训练,且样本量相对较小 | 验证商用AI模型在前列腺分割中的准确性和临床应用价值 | 123名患者的多中心、多扫描仪MRI数据集 | 数字病理学 | 前列腺癌 | 深度学习算法 | 深度学习算法(DLA1和DLA2) | MRI图像 | 123名患者 |
1454 | 2025-02-23 |
Automated Segmentation of Knee Menisci Using U-Net Deep Learning Model: Preliminary Results
2024-Dec, Maedica
DOI:10.26574/maedica.2024.19.4.690
PMID:39974461
|
研究论文 | 本研究使用U-Net深度学习模型对膝关节半月板进行自动检测和分割,初步结果显示该方法在临床环境中具有显著潜力 | 首次使用U-Net深度学习模型对膝关节半月板进行自动检测和分割,并通过与骨科医生的标注进行验证 | 数据稀缺性和需要序列特定优化是主要挑战 | 开发一种自动识别和分割膝关节半月板的模型 | 膝关节半月板 | 计算机视觉 | NA | 深度学习 | U-Net | MRI图像 | 104个膝关节MRI图像用于训练,50个MRI图像用于微调 |
1455 | 2025-02-23 |
Cough2COVID-19 detection using an enhanced multi layer ensemble deep learning framework and CoughFeatureRanker
2024-10-24, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-76639-9
PMID:39448760
|
研究论文 | 本文介绍了Cough2COVID-19框架,该框架利用咳嗽音频信号进行COVID-19检测,并通过多层级集成深度学习(MLEDL)框架提高检测效率 | 提出了Cough2COVID-19框架和CoughFeatureRanker算法,通过咳嗽音频信号进行非侵入性COVID-19检测,显著提高了检测的准确性和效率 | 未提及具体的研究局限性 | 开发一种成本效益高、非侵入性且广泛可及的COVID-19检测方法 | 咳嗽音频信号 | 机器学习 | COVID-19 | 多层级集成深度学习(MLEDL) | 集成深度学习框架 | 音频 | 未提及具体样本数量 |
1456 | 2025-02-23 |
Deep learning improves physician accuracy in the comprehensive detection of abnormalities on chest X-rays
2024-10-24, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-76608-2
PMID:39448764
|
研究论文 | 本文介绍了一种FDA批准的AI系统,通过深度学习算法辅助医生全面检测和定位胸部X光片上的异常 | 该AI系统在胸部X光片异常检测中表现出高准确性,并显著提高了医生(包括非放射科医生)的诊断准确性和效率 | 未提及具体局限性 | 研究目的是通过AI系统提高医生在胸部X光片异常检测中的准确性 | 胸部X光片 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 大规模数据集及公开数据集 |
1457 | 2025-02-23 |
The gene expression signature of electrical stimulation in the human brain
2024-Oct-22, bioRxiv : the preprint server for biology
DOI:10.1101/2023.09.21.558812
PMID:37790527
|
研究论文 | 本文通过先进的转录组和表观基因组测序技术,研究了人类大脑前颞叶直接电刺激后的分子变化,揭示了电刺激对微胶质细胞特异性细胞因子活性相关基因表达的显著影响 | 挑战了临床常用电刺激主要影响神经元基因表达的观点,揭示了微胶质细胞对电刺激的强烈反应及其对神经元回路活动的塑造作用 | 研究样本仅限于接受神经外科手术的患者,可能限制了结果的普遍性 | 探索电刺激对人类大脑的分子影响 | 人类大脑前颞叶 | 神经科学 | NA | 转录组和表观基因组测序 | 深度学习计算工具 | 基因表达数据 | 接受神经外科手术的患者 |
1458 | 2025-02-23 |
Generating multi-pathological and multi-modal images and labels for brain MRI
2024-Oct, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103278
PMID:39059240
|
研究论文 | 本文提出了一种两阶段生成模型,能够生成2D和3D语义标签图及对应的多模态图像,用于增强真实数据集并支持下游分割任务 | 提出了一种结合潜在扩散模型和VAE-GAN的两阶段生成模型,能够生成成对的图像和分割样本,填补了该领域的空白 | 未明确提及模型在特定病理条件下的生成效果或对复杂病理的适应性 | 开发一种生成模型,用于生成多病理和多模态的脑MRI图像及标签,以增强数据集并支持下游分割任务 | 脑MRI图像及语义标签图 | 计算机视觉 | NA | 潜在扩散模型、VAE-GAN | 生成模型(潜在扩散模型、VAE-GAN) | 图像(2D和3D脑MRI图像) | 未明确提及具体样本数量 |
1459 | 2025-02-23 |
ADVANCING THE UNDERSTANDING OF CLINICAL SEPSIS USING GENE EXPRESSION-DRIVEN MACHINE LEARNING TO IMPROVE PATIENT OUTCOMES
2024-Jan-01, Shock (Augusta, Ga.)
DOI:10.1097/SHK.0000000000002227
PMID:37752080
|
研究论文 | 本研究探讨了机器学习技术在结合临床数据和基因表达信息以更好地预测和理解脓毒症方面的潜力 | 利用机器学习模型,特别是神经网络、深度学习和集成方法,填补脓毒症研究中的关键证据空白,并通过基因转录信息提供对脓毒症病理生理学和生物标志物识别的见解 | 机器学习模型在解释性和偏见方面存在挑战 | 提高脓毒症患者预后,推进精准医学方法 | 脓毒症患者 | 机器学习 | 脓毒症 | 基因表达分析 | 神经网络, 深度学习, 集成方法 | 基因表达数据, 临床数据 | NA |
1460 | 2025-02-23 |
Adaptive spatial-channel feature fusion and self-calibrated convolution for early maize seedlings counting in UAV images
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1496801
PMID:39980762
|
研究论文 | 本文提出了一种基于DINO的深度学习方法RC-Dino,用于提高无人机图像中早期玉米幼苗计数的准确性 | 引入了两种创新组件:自校准卷积层RSCconv和自适应空间特征融合模块ASCFF,以提高早期玉米幼苗在特征图中的表示和区分能力 | 未提及具体局限性 | 提高无人机图像中早期玉米幼苗计数的准确性 | 早期玉米幼苗 | 计算机视觉 | NA | 深度学习 | DINO, Faster R-CNN, RetinaNet, YOLOX, Deformable DETR | 图像 | 1,233张标注图像,共83,404个标注 |