本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1541 | 2025-10-07 |
Single-Molecule Identification and Quantification of Steviol Glycosides with a Deep Learning-Powered Nanopore Sensor
2024-09-10, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.4c07038
PMID:39189792
|
研究论文 | 本研究开发了一种基于深度学习的气溶素纳米孔传感器,用于单分子水平识别和定量甜菊糖苷 | 利用野生型气溶素纳米孔通过调节电压产生的电渗流效应区分不同甜菊糖苷物种,并首次结合深度学习模型实现单分子自动识别 | 仅测试了15种甜菊糖苷物种,样本规模有限 | 开发精确识别和定量复杂甜菊糖苷结构的方法 | 甜菊糖苷(一类高甜度无热量天然甜味剂) | 生物传感 | NA | 纳米孔传感技术 | 深度学习模型 | 纳米孔电信号数据 | 15种甜菊糖苷物种 | NA | NA | 识别精度,定量准确性 | NA |
| 1542 | 2025-10-07 |
Deep Learning-Based Kinetic Analysis in Paper-Based Analytical Cartridges Integrated with Field-Effect Transistors
2024-09-10, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.4c02897
PMID:39252606
|
研究论文 | 本研究结合场效应晶体管、纸基分析盒和深度学习技术,开发了一种用于定量生物传感的动力学分析方法 | 首次将场效应晶体管、纸基分析盒与深度学习相结合,通过动力学分析解决传统生物传感器的灵敏度低和样品基质干扰问题 | 目前仅为概念验证研究,需要进一步验证其在更广泛应用场景中的性能 | 开发一种经济高效、易于使用的即时诊断和家庭检测生物传感平台 | 胆固醇检测 | 机器学习 | 心血管疾病 | 场效应晶体管传感,纸基分析技术 | 深度学习 | 动力学电信号数据 | NA | NA | NA | 变异系数,相关系数(r值) | NA |
| 1543 | 2025-10-07 |
High-Throughput and Integrated CRISPR/Cas12a-Based Molecular Diagnosis Using a Deep Learning Enabled Microfluidic System
2024-09-03, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.4c05734
PMID:39173188
|
研究论文 | 开发了一种基于CRISPR/Cas12a和深度学习的高通量微流控系统,用于快速检测SARS-CoV-2及其变异株 | 结合微流控技术、自研试剂和深度学习原型设备,实现了96样本/轮次的高通量检测,检测限低至250拷贝/mL | 样本规模有限(72个临床样本),需进一步验证系统普适性 | 开发高效集成的病原体分子诊断系统 | SARS-CoV-2病毒及其变异株 | 数字病理 | COVID-19 | CRISPR/Cas12a, RT-LAMP, 微流控技术 | 深度学习 | 分子检测数据 | 72个临床样本(22个野生型,26个突变型,24个阴性) | NA | NA | 准确率 | NA |
| 1544 | 2025-04-27 |
CT-Based Lung Size Matching in Delayed Chest Closure for Systemic Sclerosis Lung Transplantation
2024-Dec, Clinical transplantation
IF:1.9Q3
DOI:10.1111/ctr.70041
PMID:39601250
|
research paper | 本研究探讨了系统性硬化症患者肺移植中延迟胸廓闭合的临床结果、风险因素及基于CT的肺大小匹配参数 | 首次在系统性硬化症患者中研究延迟胸廓闭合的临床结果,并利用深度学习算法自动计算CT影像中的肺和胸腔体积 | 研究为回顾性设计,样本量相对较小(92例患者) | 评估系统性硬化症患者肺移植中延迟胸廓闭合的临床效果和预测因素 | 92例接受双侧肺移植的系统性硬化症患者 | digital pathology | systemic sclerosis | CT成像和深度学习算法 | 深度学习算法(未指定具体模型) | CT影像和临床数据 | 92例系统性硬化症患者(年龄51±10岁,61%为女性) | NA | NA | NA | NA |
| 1545 | 2025-10-07 |
High-throughput optimized prime editing mediated endogenous protein tagging for pooled imaging of protein localization
2024-Sep-17, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.16.613361
PMID:39345511
|
研究论文 | 开发了一种基于prime editing的高通量内源蛋白标记方法,用于并行研究蛋白质亚细胞定位 | 首次将prime editing与光学读出和测序结合,实现大规模蛋白质亚细胞定位的准确测量 | 仅验证了60种蛋白质的标记效率,尚未在不同细胞类型和环境扰动中广泛验证 | 开发能够大规模测量蛋白质亚细胞定位的技术方法 | 60种具有不同定位模式的内源蛋白质 | 计算生物学 | NA | prime editing, 原位pegRNA测序, 高通量深度学习图像分析 | 深度学习 | 图像, 测序数据 | 17,280个pegRNAs设计的文库,覆盖60种蛋白质 | NA | NA | 标记效率预测准确性 | NA |
| 1546 | 2025-10-07 |
A Multicenter Evaluation of the Impact of Therapies on Deep Learning-based Electrocardiographic Hypertrophic Cardiomyopathy Markers
2024-Mar-03, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.01.15.24301011
PMID:38293023
|
研究论文 | 本研究评估了两种肥厚型心肌病治疗方法对基于深度学习的AI-ECG检测指标的影响 | 首次使用AI-ECG模型评估不同HCM治疗方法(手术/经皮室间隔减容术与口服药物马瓦卡坦)对心电图生物标志物的影响 | 样本量相对有限,特别是马瓦卡坦治疗组仅36例患者,且为观察性研究 | 评估室间隔减容术和马瓦卡坦治疗对AI-ECG肥厚型心肌病检测指标的影响 | 接受室间隔减容术或马瓦卡坦治疗的肥厚型心肌病患者 | 医疗人工智能 | 心血管疾病 | 人工智能增强心电图 | 深度学习 | 心电图图像 | SRT组:耶鲁70例,克利夫兰100例,大西洋健康系统145例;马瓦卡坦组:耶鲁36例 | NA | NA | AI-ECG HCM评分,Wilcoxon符号秩检验 | NA |
| 1547 | 2025-10-07 |
EvoAI enables extreme compression and reconstruction of the protein sequence space
2024-Feb-23, Research square
DOI:10.21203/rs.3.rs-3930833/v1
PMID:38464127
|
研究论文 | 开发了一种名为EvoAI的混合实验计算方法,能够极端压缩和重建蛋白质序列空间 | 结合EvoScan方法获取锚点和深度学习模型重建序列空间,无需同源或结构信息即可预测新型高适应性序列 | 方法依赖于能够与转录输出耦合的生物分子功能 | 探索蛋白质序列与功能关系,实现蛋白质序列空间的压缩和重建 | 阻遏蛋白及其高适应性序列空间 | 机器学习 | NA | 转录输出耦合技术 | 深度学习模型,大语言模型 | 蛋白质序列数据 | 82个锚点 | NA | NA | 压缩比 | NA |
| 1548 | 2025-10-07 |
What makes human cortical pyramidal neurons functionally complex
2024-Dec-19, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.17.628883
PMID:39763809
|
研究论文 | 提出功能性复杂度指数(FCI)框架,通过比较人类和大鼠皮层锥体神经元的功能复杂度,揭示人类神经元功能复杂性增强的结构-生物物理基础 | 首次提出基于深度学习的标准化功能性复杂度指数(FCI)来量化神经元输入输出复杂度,并系统比较不同物种神经元的功能差异 | 研究主要聚焦于皮层锥体神经元,未涵盖其他类型神经元;FCI框架需要进一步验证其普适性 | 探究人类皮层神经元功能复杂性的结构基础及其与认知能力的关系 | 人类和大鼠的皮层锥体神经元 | 计算神经科学 | NA | 深度学习,电生理记录,形态学分析 | 深度学习框架 | 神经元形态数据,电生理数据 | 人类和大鼠不同皮层层的锥体神经元 | 深度学习框架 | NA | 功能性复杂度指数(FCI) | NA |
| 1549 | 2025-10-07 |
Evaluating Performance of Different RNA Secondary Structure Prediction Programs Using Self-cleaving Ribozymes
2024-Sep-13, Genomics, proteomics & bioinformatics
DOI:10.1093/gpbjnl/qzae043
PMID:39317944
|
研究论文 | 比较七种RNA二级结构预测工具在自切割核酶序列上的预测准确性 | 首次系统评估包括深度学习方法在内的多种RNA结构预测工具在不同复杂度任务中的表现 | 仅针对特定类别的自切割核酶序列进行评估,结果可能不适用于其他RNA类型 | 评估不同计算工具在预测RNA二级结构方面的性能差异 | 自切割核酶序列的RNA二级结构 | 生物信息学 | NA | RNA二级结构预测 | 深度学习,传统计算方法 | RNA序列数据 | 数十个自切割核酶序列 | NA | NA | 预测准确性 | NA |
| 1550 | 2025-10-07 |
Quantitative Three-Dimensional Imaging Analysis of HfO2 Nanoparticles in Single Cells via Deep Learning Aided X-ray Nano-Computed Tomography
2024-08-20, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.4c06953
PMID:39115329
|
研究论文 | 开发基于深度学习的X射线纳米计算机断层扫描方法,用于单细胞内HfO2纳米颗粒的三维定量分析 | 建立了针对单细胞3D纳米CT图像的超小物体分割方法,能够高灵敏度分析微小纳米颗粒 | 方法需要专业知识且耗时,传统批量数据分析准确性不确定 | 开发自动化深度学习辅助的纳米CT方法,用于定量分析癌细胞对超小金属纳米颗粒的摄取 | 人乳腺癌细胞系MCF-7和HfO2纳米颗粒 | 计算机视觉 | 乳腺癌 | X射线纳米计算机断层扫描 | 深度学习 | 3D图像 | 单细胞水平的纳米颗粒分析 | NA | NA | 灵敏度,准确性 | NA |
| 1551 | 2025-10-07 |
Sága, a Deep Learning Spectral Analysis Tool for Fungal Detection in Grains-A Case Study to Detect Fusarium in Winter Wheat
2024-08-13, Toxins
IF:3.9Q1
DOI:10.3390/toxins16080354
PMID:39195764
|
研究论文 | 开发了一种基于成像光谱和深度学习的镰刀菌感染小麦早期检测工具Sága | 结合预训练的YOLOv5和DeepMAC模型进行小麦穗部分割,并利用XGBoost分析高光谱信息实现镰刀菌感染检测 | 研究仅基于2021年单个实验田的数据,样本规模有限 | 开发可靠的现场特异性镰刀菌感染早期预警模型,确保粮食和饲料安全 | 冬小麦中的镰刀菌感染检测 | 计算机视觉 | 植物病害 | 成像光谱技术(高光谱成像) | YOLOv5, DeepMAC, XGBoost | 高光谱图像 | 两个实验田(接种镰刀菌的实验田52.5m×3m和对照组52.5m×3m) | NA | YOLOv5, DeepMAC | 准确率, F1分数 | NA |
| 1552 | 2025-10-07 |
Precision in Prevention and Health Surveillance: How Artificial Intelligence May Improve the Time of Identification of Health Concerns through Social Media Content Analysis
2024-Aug, Yearbook of medical informatics
DOI:10.1055/s-0044-1800736
PMID:40199301
|
综述 | 探讨人工智能通过社交媒体内容分析提升预防和健康监测精准度的潜力 | 系统评估AI技术在社交媒体健康监测中的创新应用,包括基于Transformer的主题建模和联邦学习等先进技术 | 仅纳入2023年发表的文献,样本量有限(最终筛选10篇文献),可能存在发表偏倚 | 提升健康监测的及时性和准确性,实现更主动有效的健康干预 | 社交媒体健康相关内容,包括自杀预防、心理健康、电子烟使用等公共卫生议题 | 自然语言处理 | 公共卫生 | 文献计量分析,社交媒体内容分析 | 机器学习,深度学习,自然语言处理 | 文本数据(社交媒体内容) | 89篇文献初步分析,最终筛选10篇相关研究 | Bibliometrix | Transformer | NA | NA |
| 1553 | 2025-10-07 |
Year 2023 in Biomedical Natural Language Processing: a Tribute to Large Language Models and Generative AI
2024-Aug, Yearbook of medical informatics
DOI:10.1055/s-0044-1800751
PMID:40199311
|
综述 | 对2023年生物医学自然语言处理领域的研究进展进行总结,重点分析大语言模型和生成式AI的应用趋势 | 系统梳理了2023年生物医学NLP领域的最佳论文评选过程,揭示了大语言模型在数据增强、领域适应和模型蒸馏方面的创新应用 | 仅基于两个文献数据库(Medline和ACL)进行分析,可能未覆盖该领域所有重要研究成果 | 总结2023年生物医学自然语言处理领域的研究趋势和最佳论文 | 2023年发表的2,148篇生物医学NLP研究论文 | 自然语言处理 | COVID-19, 癌症, 精神健康 | 自然语言处理, 深度学习 | 大语言模型, ChatGPT | 社交媒体内容, 电子健康记录 | 2,148篇论文 | NA | NA | NA | NA |
| 1554 | 2025-10-07 |
Molybdenum Disulfide-Assisted Spontaneous Formation of Multistacked Gold Nanoparticles for Deep Learning-Integrated Surface-Enhanced Raman Scattering
2024-07-09, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.4c00978
PMID:38913718
|
研究论文 | 开发了一种结合深度学习和表面增强拉曼散射的生物传感平台,用于通过人类泪液进行COVID-19现场筛查 | 利用二硫化钼辅助自发形成紧密堆积的三维金纳米颗粒结构,无需还原剂即可合成部分金纳米颗粒 | NA | 开发用于极低分析物浓度快速、低损伤、高通量无标记检测的生物传感平台 | 人类泪液中的冠状病毒疾病(COVID-19) | 生物传感 | COVID-19 | 表面增强拉曼散射(SERS) | CNN | 拉曼光谱数据 | NA | NA | 卷积神经网络 | NA | NA |
| 1555 | 2025-10-07 |
Sex estimation from maxillofacial radiographs using a deep learning approach
2024-06-01, Dental materials journal
IF:1.9Q4
DOI:10.4012/dmj.2023-253
PMID:38599831
|
研究论文 | 本研究使用深度学习模型从侧位头颅X光片中估计性别 | 首次将VGG16和DenseNet-121深度学习模型应用于侧位头颅X光片的性别估计,并通过显著性图分析模型关注区域 | 仅使用600张侧位头颅X光片,样本量有限;为回顾性研究 | 构建更高效可靠的性别估计方法 | 侧位头颅X光片 | 计算机视觉 | NA | X射线成像 | CNN | 医学影像 | 600张侧位头颅X光片 | NA | VGG16, DenseNet-121 | 准确率, 敏感度(召回率), 精确率, F1分数, ROC曲线下面积 | NA |
| 1556 | 2025-10-07 |
Machine learning and deep learning for the diagnosis and treatment of ankylosing spondylitis- a scoping review
2024-May, Journal of clinical orthopaedics and trauma
DOI:10.1016/j.jcot.2024.102421
PMID:38708092
|
综述 | 本文通过范围综述探讨机器学习和深度学习在强直性脊柱炎诊断与治疗中的应用现状 | 首次系统梳理2013-2023年间ML/DL在AS领域的应用,识别当前研究空白并提出未来方向 | 缺乏来自多中心包含多种诊断参数的足够规模数据集,基于ML/DL的治疗研究少于诊断研究 | 评估ML/DL技术在强直性脊柱炎诊断和治疗各阶段的应用现状 | PubMed数据库中2013-2023年涉及ML/DL在AS中应用的全文文献 | 机器学习 | 强直性脊柱炎 | 文献综述方法 | NA | 文献数据 | NA | NA | NA | NA | NA |
| 1557 | 2025-10-07 |
Enabling late-stage drug diversification by high-throughput experimentation with geometric deep learning
2024-02, Nature chemistry
IF:19.2Q1
DOI:10.1038/s41557-023-01360-5
PMID:37996732
|
研究论文 | 开发了一个结合几何深度学习和高通量实验的药物后期功能化平台 | 首次将几何深度学习与高通量实验相结合用于药物后期功能化,并引入了用户友好的反应格式 | 未知底物的反应性分类准确率相对较低(67%),区域选择性分类的F分数为67% | 优化药物候选分子的性质通过后期功能化 | 23种不同的商业药物分子 | 机器学习 | NA | 高通量反应筛选 | 几何深度学习 | 化学反应数据 | 23种商业药物分子 | NA | NA | 平均绝对误差, 平衡准确率, F分数 | NA |
| 1558 | 2025-04-26 |
An enhanced GhostNet model for emotion recognition: leveraging efficient feature extraction and attention mechanisms
2024, Frontiers in psychology
IF:2.6Q2
DOI:10.3389/fpsyg.2024.1459446
PMID:40270901
|
研究论文 | 提出了一种增强型GhostNet模型(EGT),结合Transformer编码器和双重注意力机制,用于通过面部表情进行鲁棒的情绪识别 | 整合了GhostNet的高效特征提取、Transformer的全局上下文捕捉能力以及双重注意力机制,以选择性地增强关键特征 | 未明确提及具体限制,但可能包括对复杂自然环境和多样化情绪表达的处理能力仍有提升空间 | 提高情绪识别系统的准确性和鲁棒性,以增强智能人机交互系统、个性化推荐系统和心理健康监测工具 | 面部表情情绪识别 | 计算机视觉 | NA | 深度学习 | GhostNet, Transformer, 双重注意力机制 | 图像 | RAF-DB数据集和AffectNet数据集(具体样本数量未提及) | NA | NA | NA | NA |
| 1559 | 2025-04-25 |
A multi-agent reinforcement learning based approach for automatic filter pruning
2024-Dec-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82562-w
PMID:39730902
|
研究论文 | 本文提出了一种基于多智能体强化学习的自动滤波器剪枝方法QMIX_FP,用于深度卷积神经网络的高效部署 | 首次将多智能体强化学习算法QMIX应用于滤波器剪枝,考虑了各卷积层之间的交互作用及其对整体网络的不同敏感性 | 仅在VGG-16和AlexNet两个基准网络上进行了验证,未涉及更复杂的网络结构 | 解决资源受限设备上深度卷积神经网络的高效部署问题 | 深度卷积神经网络(DCNNs)的滤波器剪枝 | 机器学习 | NA | 强化学习(RL)、知识蒸馏 | QMIX、VGG-16、AlexNet | 图像数据 | CIFAR-10和CIFAR-100数据集 | NA | NA | NA | NA |
| 1560 | 2025-04-25 |
Deep-DM: Deep-Driven Deformable Model for 3D Image Segmentation Using Limited Data
2024-Dec, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3440171
PMID:39110559
|
研究论文 | 提出了一种名为Deep-DM的深度学习驱动变形模型,用于在有限训练数据下进行3D医学图像分割 | 通过CNN学习能量函数并集成到显式变形模型中,减少了训练数据依赖,提高了小样本下的分割性能 | 需要进一步验证在其他解剖结构和影像模态上的通用性 | 开发一种在有限数据条件下仍能准确分割3D医学图像的方法 | 左心室、胎儿头部(超声)、左心房(MRI)和膀胱(CT) | 数字病理 | NA | 深度学习驱动的变形模型 | CNN | 3D医学图像 | 不同数量的训练体积(具体数量未说明) | NA | NA | NA | NA |