本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1781 | 2025-01-30 |
Three-stage training strategy phase unwrapping method for high speckle noises
2024-Dec-30, Optics express
IF:3.2Q2
DOI:10.1364/OE.544968
PMID:39876182
|
研究论文 | 本文提出了一种三阶段多任务相位展开方法,用于高噪声条件下的相位展开 | 提出了一种三阶段训练策略,包括包裹相位去噪、包裹计数预测和展开相位误差补偿,并引入了基于卷积的多尺度空间注意力模块 | 方法在模拟数据上进行了测试,但未提及在实际数据上的应用效果 | 提高高噪声条件下的相位展开精度 | 相位展开问题 | 计算机视觉 | NA | 深度学习 | 卷积神经网络(CNN) | 模拟数据 | NA |
1782 | 2025-01-30 |
OAM-basis underwater single-pixel imaging based on deep learning at a low sampling rate
2024-Dec-30, Optics express
IF:3.2Q2
DOI:10.1364/OE.543358
PMID:39876191
|
研究论文 | 本文介绍了一种基于轨道角动量(OAM)基的深度学习水下单像素成像方法,旨在解决低采样率和高浊度环境下的成像挑战 | 结合OAM基采样方案和改进的重建网络,显著提高了重建质量并增强了泛化能力,在3.125%的采样率和128 NTU浊度条件下仍能有效恢复水下目标图像 | NA | 解决水下环境中低采样率和高浊度带来的成像挑战 | 水下目标图像 | 计算机视觉 | NA | 深度学习 | DARU-GAN(双注意力残差U-Net生成对抗网络) | 图像 | NA |
1783 | 2025-01-30 |
A deep learning model for carotid plaques detection based on CTA images: a two stepwise early-stage clinical validation study
2024, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2024.1480792
PMID:39871993
|
研究论文 | 本研究开发了一种基于CTA图像的深度学习模型,用于颈动脉斑块检测,并评估了该模型在临床应用中的可行性和价值 | 结合ResUNet与Pyramid Scene Parsing Network (PSPNet)增强斑块分割,并通过两步早期临床验证研究模拟真实临床斑块诊断场景 | 研究为回顾性设计,可能影响结果的普遍性 | 开发并验证一种基于CTA图像的深度学习模型,用于颈动脉斑块的检测 | 颈动脉粥样硬化斑块患者 | 计算机视觉 | 心血管疾病 | CTA成像 | ResUNet与PSPNet结合 | 图像 | 647名患者(475名训练,86名验证,86名测试) |
1784 | 2025-01-28 |
Artificial Intelligence in Fetal and Pediatric Echocardiography
2024-Dec-25, Children (Basel, Switzerland)
DOI:10.3390/children12010014
PMID:39857845
|
综述 | 本文综述了人工智能在胎儿和儿科超声心动图中的应用、挑战和未来方向 | 探讨了人工智能在自动化图像采集、图像分割、先天性心脏病检测和测量方面的潜力 | 数据集数量少、算法透明度、医生对AI的接受度以及可访问性等问题仍需解决 | 研究人工智能在胎儿和儿科超声心动图中的应用 | 胎儿和儿科患者 | 医学影像 | 先天性心脏病 | 机器学习和深度学习 | NA | 图像 | NA |
1785 | 2025-01-29 |
A simple 2D multibody model to better quantify the movement quality of anterior cruciate ligament patients during single leg hop
2024-Dec, Acta orthopaedica Belgica
IF:0.5Q4
DOI:10.52628/90.4.12600
PMID:39869863
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1786 | 2024-11-21 |
Machine learning models of cerebral oxygenation (rcSO2) for brain injury detection in neonates with hypoxic-ischaemic encephalopathy
2024-Nov, The Journal of physiology
DOI:10.1113/JP287001
PMID:39425751
|
研究论文 | 本研究旨在测试区域脑氧饱和度(rcSO2)在检测患有缺氧缺血性脑病(HIE)的新生儿脑损伤中的潜在应用 | 本研究首次将机器学习和深度学习模型应用于rcSO2信号分析,以预测短期脑损伤,并展示了其在临床决策中的潜力 | 研究样本量较小,且仅限于足月婴儿,未来需要在大样本和不同年龄段婴儿中进一步验证 | 评估机器学习和深度学习模型在检测患有HIE的新生儿脑损伤中的应用 | 患有缺氧缺血性脑病(HIE)的足月新生儿 | 机器学习 | 新生儿疾病 | 近红外光谱(NIRS) | 机器学习模型和深度学习模型 | 信号 | 58名足月婴儿 |
1787 | 2025-01-29 |
Use of AI methods to assessment of lower limb peak torque in deaf and hearing football players group
2024-Sep-01, Acta of bioengineering and biomechanics
IF:0.8Q4
DOI:10.37190/abb-02474-2024-02
PMID:39869478
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1788 | 2024-08-05 |
Estimating helmet wearing rates via a scalable, low-cost algorithm: a novel integration of deep learning and google street view
2024-06-20, BMC public health
IF:3.5Q1
DOI:10.1186/s12889-024-19118-0
PMID:38902622
|
研究论文 | 本文提出了一种可扩展的低成本算法,通过深度学习和谷歌街景图像估计头盔佩戴率 | 结合深度学习对象检测技术和谷歌街景图像的新方法,提供全球范围内的头盔佩戴率估算 | 研究样本仅限于3995张图像,可能影响算法的普遍适用性 | 旨在通过大规模数据收集评估摩托车头盔佩戴情况并促进相关政策制定 | 使用来自谷歌街景的数据分析摩托车驾驶员和乘客的头盔佩戴情况 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 3995张图像 |
1789 | 2024-08-05 |
Leveraging data science and machine learning for urban climate adaptation in two major African cities: a HE2AT Center study protocol
2024-06-18, BMJ open
IF:2.4Q1
DOI:10.1136/bmjopen-2023-077529
PMID:38890141
|
研究论文 | 该研究旨在了解非洲城市中与热相关的健康影响复杂性 | 创新点在于综合健康、社会经济、气候和卫星影像数据来映射城市热风险,并建立热健康预测模型和预警系统 | 该研究主要集中于两座城市,可能无法广泛适用于其他地区 | 研究目的是促进非洲城市的气候适应能力,保护受到热危害不成比例影响的人群 | 研究对象包括在约翰内斯堡和阿比让进行的成人临床试验或队列研究的健康相关数据集 | 机器学习 | NA | 统计评估、机器学习和深度学习技术 | NA | 健康、社会经济、气候和卫星影像数据 | 2000年至2022年在约翰内斯堡和阿比让的成人临床试验或队列研究的健康数据 |
1790 | 2025-01-29 |
Histopathology and proteomics are synergistic for High-Grade Serous Ovarian Cancer platinum response prediction
2024-Jun-03, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.06.01.24308293
PMID:38883738
|
研究论文 | 本研究通过结合H&E染色的全切片图像和蛋白质组学特征,使用多模态深度学习框架显著提高了对高级别浆液性卵巢癌患者铂类药物反应预测的准确性 | 首次将H&E染色的全切片图像与蛋白质组学特征结合,使用多模态深度学习框架进行铂类药物反应预测,并超越了同源重组缺陷评分在预测铂类药物反应和患者总体生存率方面的表现 | NA | 提高高级别浆液性卵巢癌患者铂类药物反应预测的准确性 | 高级别浆液性卵巢癌患者 | 数字病理学 | 卵巢癌 | H&E染色、蛋白质组学 | 多模态深度学习框架 | 图像、蛋白质组学数据 | NA |
1791 | 2025-01-29 |
DeepIDA-GRU: a deep learning pipeline for integrative discriminant analysis of cross-sectional and longitudinal multiview data with applications to inflammatory bowel disease classification
2024-May-23, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae339
PMID:39007595
|
研究论文 | 本文提出了一种名为DeepIDA-GRU的深度学习管道,用于整合横截面和纵向多视图数据的判别分析,并应用于炎症性肠病分类 | 该管道结合了统计和深度学习方法,能够整合来自多个来源的横截面和纵向数据,并识别出对视图间关联和类别分离有贡献的关键变量 | 现有方法通常要求所有视图的数据类型相同(仅横截面数据或仅纵向数据),或者在整合方法中不考虑任何类别结果 | 开发一种能够整合横截面和纵向多视图数据的深度学习管道,以更好地理解复杂疾病的病理生物学 | 炎症性肠病(IBD)研究中的横截面和纵向多组学数据(宏基因组学、转录组学和代谢组学) | 机器学习 | 炎症性肠病 | 功能主成分分析和欧拉特征提取 | 密集前馈网络(用于横截面数据)和循环神经网络(用于纵向数据) | 多组学数据 | NA |
1792 | 2025-01-29 |
Photoplethysmography based atrial fibrillation detection: a continually growing field
2024-Apr-17, Physiological measurement
IF:2.3Q3
DOI:10.1088/1361-6579/ad37ee
PMID:38530307
|
综述 | 本文全面回顾了2019年7月至2022年12月期间,基于光电容积描记术(PPG)的心房颤动(AF)检测领域的最新进展,特别是数字健康和人工智能(AI)解决方案的应用 | 更新了自2019年6月以来PPG-based AF检测领域的最新进展,包括统计方法、传统机器学习技术和深度学习方法的深入评估,并维护了一个专门网站以定期更新该领域的最新研究 | NA | 回顾和评估基于PPG的心房颤动检测技术的最新进展 | 心房颤动(AF)检测 | 数字健康 | 心血管疾病 | 光电容积描记术(PPG) | 传统机器学习和深度学习 | NA | 57项相关研究 |
1793 | 2025-01-04 |
Transfer Learning With Active Sampling for Rapid Training and Calibration in BCI-P300 Across Health States and Multi-Centre Data
2024, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2024.3420960
PMID:38949927
|
研究论文 | 本文提出了一种基于主动采样的迁移学习方法,用于在脑机接口(BCI)P300波检测中快速训练和校准,适用于不同健康状况和多中心数据 | 提出了基于Poison Sampling Disk(PDS)的主动采样(AS)方法,用于自适应迁移学习,显著提高了分类精度和训练效率 | 研究仍面临处理来自不同设备、受试者、多中心及健康与患者群体的多样性和不平衡数据集的挑战 | 提高脑机接口(BCI)P300波检测的分类精度和训练效率,适应不同健康状况和多中心数据 | 脑机接口(BCI)P300波检测 | 机器学习 | NA | 迁移学习,主动采样(AS) | 卷积神经网络(CNN) | 神经数据 | 两个不同的国际复制数据集 |
1794 | 2025-01-28 |
An explainable language model for antibody specificity prediction using curated influenza hemagglutinin antibodies
2024-10-08, Immunity
IF:25.5Q1
DOI:10.1016/j.immuni.2024.07.022
PMID:39163866
|
研究论文 | 本文介绍了一种基于序列的抗体特异性预测的轻量级记忆B细胞语言模型(mBLM),并利用超过5,000个流感血凝素(HA)抗体数据集进行训练 | 开发了一种新的轻量级记忆B细胞语言模型(mBLM),用于基于序列的抗体特异性预测,并通过模型可解释性分析识别了HA干区抗体的关键序列特征 | 数据集主要来源于研究出版物和专利,可能存在数据偏差 | 预测抗体特异性,并提高对流感病毒抗体反应的分子理解 | 流感血凝素(HA)抗体 | 自然语言处理 | 流感 | 语言模型 | mBLM | 序列数据 | 超过5,000个流感血凝素(HA)抗体 |
1795 | 2025-01-28 |
Potential Use and Limitation of Artificial Intelligence to Screen Diabetes Mellitus in Clinical Practice: A Literature Review
2024-Oct, Acta medica Indonesiana
IF:0.7Q3
PMID:39865054
|
文献综述 | 本文综述了人工智能在临床实践中筛查糖尿病的潜在应用及其局限性 | 强调了人工智能技术(如机器学习和深度学习)在提高糖尿病筛查准确性方面的潜力,特别是在低资源环境中的应用 | 指出了当前临床实践中基于血液或实验室检测的糖尿病筛查方法的局限性,包括访问和成本问题 | 探讨人工智能技术在减少未诊断糖尿病负担中的应用 | 全球未诊断糖尿病的个体,特别是低收入和中等收入国家(如印度尼西亚)的人群 | 机器学习 | 糖尿病 | 机器学习和深度学习 | NA | NA | NA |
1796 | 2025-01-28 |
Status and future trends in wastewater management strategies using artificial intelligence and machine learning techniques
2024-Aug, Chemosphere
IF:8.1Q1
|
综述 | 本文综述了利用人工智能和机器学习技术进行水和废水管理的最新趋势 | 结合AI、深度学习和物联网技术,提出了高效的水管理框架 | 未具体说明数据来源和样本量,案例研究和统计评估的细节不足 | 探讨智能水管理机制,以满足不同用途的水质要求 | 水和废水管理策略 | 机器学习 | NA | 人工智能(AI)、深度学习(DL)、物联网(IoT) | NA | 多种形式的数据 | NA |
1797 | 2025-01-28 |
MambaTab: A Plug-and-Play Model for Learning Tabular Data
2024-Aug, Proceedings. IEEE Conference on Multimedia Information Processing and Retrieval
DOI:10.1109/mipr62202.2024.00065
PMID:39850741
|
研究论文 | 本文介绍了一种基于结构化状态空间模型(SSM)的创新方法MambaTab,用于处理表格数据 | MambaTab利用新兴的SSM变体Mamba,为表格数据提供端到端的监督学习,相比现有方法在性能上更优且参数更少 | NA | 开发一种高效、可扩展且通用的表格数据处理模型 | 表格数据 | 机器学习 | NA | 结构化状态空间模型(SSM) | Mamba | 表格数据 | 多样化的基准数据集 |
1798 | 2025-01-28 |
Beyond Size and Class Balance: Alpha as a New Dataset Quality Metric for Deep Learning
2024-Jul-31, ArXiv
PMID:39830079
|
研究论文 | 本文提出了一种新的数据集质量度量指标——α,用于改进深度学习在医学影像中的性能 | 引入了生态学中的多样性度量框架,提出了一种新的数据集质量度量指标α,超越了传统的数据集大小和类别平衡的度量方法 | 研究仅限于医学影像数据集,未验证在其他类型数据集上的适用性 | 探索如何通过最大化数据集多样性来改进深度学习模型在图像分类任务中的性能 | 医学影像数据集 | 计算机视觉 | NA | NA | 深度学习模型 | 图像 | 七个医学数据集的数千个子集 |
1799 | 2025-01-28 |
The cytoarchitectonic landscape revealed by deep learning method facilitated precise positioning in mouse neocortex
2024-06-04, Cerebral cortex (New York, N.Y. : 1991)
DOI:10.1093/cercor/bhae229
PMID:38836835
|
研究论文 | 本文开发了一种细胞结构标志物识别流程,利用荧光显微光学断层扫描技术成像小鼠全脑,并通过快速3D卷积网络分割整个新皮层的神经元体,揭示了新皮层的细胞结构景观 | 开发了一种新的细胞结构标志物识别流程,结合荧光显微光学断层扫描和快速3D卷积网络,实现了新皮层神经元的三维分割和分析 | 研究主要集中在小鼠新皮层,未涉及其他物种或更广泛的脑区 | 提高对新皮层结构的理解,特别是皮层区域的精确定位 | 小鼠新皮层 | 计算机视觉 | NA | 荧光显微光学断层扫描 | 3D卷积网络 | 图像 | 小鼠全脑 |
1800 | 2025-01-28 |
Exploring intricate connectivity patterns for cognitive functioning and neurological disorders: incorporating frequency-domain NC method into fMRI analysis
2024-05-02, Cerebral cortex (New York, N.Y. : 1991)
DOI:10.1093/cercor/bhae195
PMID:38741270
|
研究论文 | 本研究将频域新因果方法应用于功能磁共振成像分析,以探索认知功能和神经系统疾病的复杂连接模式 | 将频域新因果方法引入功能磁共振成像分析,构建了多种因果关联模型,并利用深度学习模型分析脑区拓扑变化特征 | 研究主要基于模拟信号和特定患者群体,可能无法完全反映真实世界的复杂性 | 探索认知功能和神经系统疾病的复杂连接模式 | 1,252组不同认知障碍程度的个体 | 神经影像分析 | 阿尔茨海默病 | 功能磁共振成像(fMRI) | 深度学习模型 | 功能磁共振成像数据 | 1,252组个体 |