本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1881 | 2025-01-22 |
Linking disease activity with optical coherence tomography angiography in neovascular age related macular degeneration using artificial intelligence
2024-08-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-70234-8
PMID:39164449
|
研究论文 | 本研究利用人工智能技术探讨了新生血管性年龄相关性黄斑变性(nAMD)患者疾病活动性与光学相干断层扫描血管成像(OCTA)参数之间的定量关联 | 首次使用深度学习算法(RetInSight)检测和量化SD-OCT上的黄斑液体,并评估其与OCTA参数的相关性 | 样本量相对较小(230例患者),且部分相关性未达到统计学显著性 | 探讨nAMD患者疾病活动性与OCTA参数之间的定量关联,以优化抗VEGF治疗策略 | 接受抗VEGF治疗的nAMD患者 | 数字病理学 | 年龄相关性黄斑变性 | 光学相干断层扫描血管成像(OCTA) | 深度学习算法(RetInSight) | 图像 | 230例患者 |
1882 | 2025-01-22 |
The diagnostic performance of AI-based algorithms to discriminate between NMOSD and MS using MRI features: A systematic review and meta-analysis
2024-Jul, Multiple sclerosis and related disorders
IF:2.9Q2
DOI:10.1016/j.msard.2024.105682
PMID:38781885
|
系统综述和荟萃分析 | 本文系统回顾和荟萃分析了基于MRI特征的AI算法在区分视神经脊髓炎谱系障碍(NMOSD)和多发性硬化症(MS)中的诊断性能 | 首次系统评估了AI模型在区分NMOSD和MS中的表现,并提供了基于MRI特征的诊断准确率、敏感性和特异性 | 研究结果受到MR成像、模型评估和报告性能指标的异质性影响,需要多中心数据集、标准化成像和评估协议以及详细透明的结果报告来优化性能 | 评估基于MRI特征的AI算法在区分NMOSD和MS中的诊断性能 | NMOSD和MS患者 | 数字病理学 | 视神经脊髓炎谱系障碍和多发性硬化症 | MRI | 机器学习和深度学习 | 图像 | 1,362名MS患者和1,118名NMOSD患者 |
1883 | 2025-01-22 |
Sensing technologies and machine learning methods for emotion recognition in autism: Systematic review
2024-Jul, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105469
PMID:38723429
|
系统综述 | 本文综述了自闭症情感识别中使用的传感技术和机器学习方法,识别现有障碍和未来可能的研究方向 | 专注于自闭症患者的情感识别,结合传感技术和机器学习方法,填补了该领域的研究空白 | 研究主要集中在广泛的自闭症谱系上,对更具体的谱系障碍关注较少,隐私和安全问题讨论不足 | 评估自闭症情感识别中传感技术和机器学习方法的应用现状,识别现有障碍和未来研究方向 | 自闭症儿童、青少年和成人 | 机器学习 | 自闭症 | 面部表情识别技术、生理传感器 | 经典监督学习技术、无监督方法、深度学习模型 | 视频、生理数据 | 65篇符合标准的出版物 |
1884 | 2025-01-22 |
Small-Molecule Inhibitors of TIPE3 Protein Identified through Deep Learning Suppress Cancer Cell Growth In Vitro
2024-04-30, Cells
IF:5.1Q2
DOI:10.3390/cells13090771
PMID:38727307
|
研究论文 | 本文通过深度学习方法识别出TIPE3蛋白的小分子抑制剂,并在体外实验中验证了其对癌细胞生长的抑制作用 | 结合深度学习和分子动力学模拟进行虚拟药物筛选,成功识别出具有显著抗癌活性的TIPE3抑制剂 | 研究仅限于体外实验,尚未进行体内实验验证 | 开发针对TIPE3蛋白的抗癌药物 | TIPE3蛋白及其小分子抑制剂 | 机器学习 | 癌症 | DFCNN, Autodock Vina docking, DeepBindBC, MD, metadynamics | DFCNN | 化合物数据集 | ZINC化合物数据集中的六个候选化合物 |
1885 | 2025-01-22 |
Predicting 5-year recurrence risk in colorectal cancer: development and validation of a histology-based deep learning approach
2024-Apr, British journal of cancer
IF:6.4Q1
DOI:10.1038/s41416-024-02573-2
PMID:38245662
|
研究论文 | 本文开发并验证了一种基于组织学的深度学习模型,用于预测非转移性结直肠癌患者的5年无复发生存率 | 使用弱监督深度学习模型从组织学图像中提取信息,进行风险分层,并建立了深度预后因子(DL-RRS) | 研究样本仅来自三家医院,可能限制了模型的泛化能力 | 预测非转移性结直肠癌患者的5年复发风险,以辅助临床决策 | 非转移性结直肠癌患者 | 数字病理学 | 结直肠癌 | 深度学习 | 弱监督深度学习模型 | 组织学图像 | 614例非转移性结直肠癌患者 |
1886 | 2025-01-22 |
Multimodal Deep Learning Network for Differentiating Between Benign and Malignant Pulmonary Ground Glass Nodules
2024, Current medical imaging
IF:1.1Q3
|
研究论文 | 本研究旨在建立一个多模态深度学习网络模型,以提高肺磨玻璃结节(GGNs)良恶性的诊断准确性 | 结合ResNet提取影像数据、Word2Vec提取语义信息以及Self Attention方法融合影像特征和患者数据,构建了一个多模态分类模型 | 研究依赖于回顾性数据,可能存在选择偏差 | 提高肺磨玻璃结节良恶性的诊断准确性 | 肺磨玻璃结节(GGNs) | 计算机视觉 | 肺癌 | 胸部CT | ResNet, VGG, 多模态深度学习网络 | 影像数据, 语义信息 | 1020个GGNs(训练和验证集),204个GGNs(测试集) |
1887 | 2025-01-21 |
Assessment of ComBat Harmonization Performance on Structural Magnetic Resonance Imaging Measurements
2024-Dec-15, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.70085
PMID:39704541
|
研究论文 | 本研究评估了ComBat技术在结构磁共振成像(MRI)测量中的性能,特别是在多中心数据聚合的背景下 | 使用稳健的交叉验证方法来评估ComBat在多中心MRI数据中的性能,并应用多类高斯过程分类器进行定量分析 | 性能评估主要基于定量的统计分析和机器学习方法,缺乏更广泛的定性验证 | 评估ComBat技术在消除多中心MRI数据中的站点效应方面的有效性 | 多中心MRI数据中的体积和表面测量值 | 医学影像分析 | NA | ComBat技术 | 多类高斯过程分类器 | MRI图像 | 来自三个站点的MRI数据 |
1888 | 2025-01-21 |
Prospective de novo drug design with deep interactome learning
2024-Apr-22, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-47613-w
PMID:38649351
|
研究论文 | 本文提出了一种基于交互组深度学习的计算方法,用于从头设计具有特定化学和药理性质的药物分子 | 该方法结合了图神经网络和化学语言模型的独特优势,无需应用特定的强化学习、迁移学习或少样本学习,实现了“零样本”构建具有特定生物活性、可合成性和结构新颖性的化合物库 | NA | 开发一种新的计算方法,用于从头设计药物分子,特别是针对人类过氧化物酶体增殖物激活受体(PPAR)亚型γ的结合位点 | 药物分子,特别是针对PPAR亚型γ的配体 | 机器学习 | NA | 深度学习,图神经网络,化学语言模型 | 图神经网络,化学语言模型 | 化学结构数据 | NA |
1889 | 2025-01-20 |
Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy
2024-Dec-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.538473
PMID:39679394
|
研究论文 | 本文提出了一种基于深度学习的方法,用于在自适应光学-光学相干断层扫描(AO-OCT)图像中检测视网膜色素上皮(RPE)细胞,其准确率超过人类表现 | 使用部分标注训练数据,开发了一种自动化细胞分割算法,其准确率优于人类表现 | 未提及具体局限性 | 开发一种自动化算法,用于快速、经济且客观地量化RPE细胞的结构特性 | 视网膜色素上皮(RPE)细胞 | 计算机视觉 | 视网膜神经退行性疾病 | 自适应光学-光学相干断层扫描(AO-OCT) | 深度学习 | 图像 | 未提及具体样本数量 |
1890 | 2025-01-19 |
Intelligent Diagnosis of Hypopigmented Dermatoses and Intelligent Evaluation of Vitiligo Severity on the Basis of Deep Learning
2024-Dec, Dermatology and therapy
IF:3.5Q1
DOI:10.1007/s13555-024-01296-9
PMID:39514178
|
研究论文 | 本研究提出了一种基于深度学习的智能诊断模型,用于分类诊断色素减退性皮肤病(HD)和评估白癜风严重程度 | 通过将squeeze-and-excitation (SE)模块与候选模型结合,构建了优化的诊断模型,并提出了一种客观的严重程度评估指标,结合分割模型形成了严重程度评估模型 | 研究中使用的数据集主要来自4744名患者,可能无法涵盖所有类型的HD和白癜风病例 | 开发一种客观、准确且方便的智能诊断和评估方法,用于色素减退性皮肤病和白癜风的严重程度评估 | 色素减退性皮肤病(HD)和白癜风患者 | 计算机视觉 | 皮肤病 | 深度学习 | SE_ResNet-18, HR-Net | 图像 | 4744名患者的11483张图像 |
1891 | 2025-01-19 |
Three-dimensional convolutional neural network for leak detection and localization in smart water distribution systems
2024-Dec-01, Water research X
IF:7.2Q1
DOI:10.1016/j.wroa.2024.100264
PMID:39822329
|
研究论文 | 本文提出了一种三维卷积神经网络(3D CNN)深度学习模型,用于智能水分配系统中的泄漏检测和定位 | 首次将3D CNN应用于水分配网络的泄漏检测和定位,能够处理压力和时间的空间分布信息 | 深度学习模型的适应性可能受限,且受水力模拟模型影响较大,网络变化时需要重新训练,可能耗时且难以处理多种故障情况 | 研究智能水分配系统中的泄漏检测和定位方法 | 水分配网络(WDNs)中的泄漏 | 机器学习 | NA | 深度学习 | 3D CNN | 压力数据 | 使用奥斯汀的一个真实水分配网络进行测试,生成了150毫米管道中3升/秒的泄漏模拟数据 |
1892 | 2024-11-23 |
Corrigendum to: Deep learning(s) in gaming disorder through the user-avatar bond: A longitudinal study using machine learning
2024-Nov-22, Journal of behavioral addictions
IF:6.6Q1
DOI:10.1556/2006.2024.30000
PMID:39576296
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1893 | 2025-01-19 |
Association of quantitative histopathology measurements with antemortem medial temporal lobe cortical thickness in the Alzheimer's disease continuum
2024-Sep-03, Acta neuropathologica
IF:9.3Q1
DOI:10.1007/s00401-024-02789-9
PMID:39227502
|
研究论文 | 本文开发了两种深度学习算法,用于测量与阿尔茨海默病和LATE相关的磷酸化tau和TDP-43病理,并探讨了这些病理与内侧颞叶结构测量之间的关系 | 使用深度学习算法定量测量磷酸化tau和TDP-43病理,提供了比半定量评分更精细的病理测量方法,并展示了其在理解病理与结构关系中的优势 | 研究样本量相对较小(140例),且仅关注了内侧颞叶区域,未涉及其他脑区 | 探讨内侧颞叶萎缩与特定神经病理之间的关系,特别是磷酸化tau和TDP-43病理 | 阿尔茨海默病和LATE患者的脑组织样本 | 数字病理学 | 阿尔茨海默病 | 深度学习 | 深度学习算法 | 图像 | 140例生前MRI成像的病例 |
1894 | 2025-01-19 |
ARID3C Acts as a Regulator of Monocyte-to-Macrophage Differentiation Interacting with NPM1
2024-Aug-02, Journal of proteome research
IF:3.8Q1
DOI:10.1021/acs.jproteome.3c00509
PMID:38231884
|
研究论文 | 本研究探讨了ARID3C的细胞定位和功能,发现其与NPM1相互作用,促进单核细胞向巨噬细胞分化 | 首次揭示了ARID3C通过与NPM1结合并转运至细胞核,作为转录因子调控单核细胞向巨噬细胞分化的机制 | 未明确ARID3C在其他细胞类型或生物过程中的功能 | 阐明ARID3C的生物学功能及其在单核细胞向巨噬细胞分化中的作用 | ARID3C蛋白及其与NPM1的相互作用 | 分子生物学 | NA | LC-MS/MS, 深度学习, AlphaFold2 | 深度学习 | 蛋白质相互作用数据 | NA |
1895 | 2025-01-19 |
Chest CT-based automated vertebral fracture assessment using artificial intelligence and morphologic features
2024-Jun, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17072
PMID:38721977
|
研究论文 | 本文提出了一种基于胸部CT的自动化椎体骨折评估方法,利用深度学习和形态学特征进行椎体分割、标记和骨折检测 | 结合深度学习、多参数冻结增长算法和强度自相关技术,实现了椎体的自动化分割、标记及骨折检测,并验证了该方法在低剂量CT上的通用性 | 方法在低剂量CT上的通用性验证样本量较小(n=236),可能需要进一步扩大样本量以验证其稳定性 | 开发一种自动化方法,用于胸部CT图像中的椎体骨折评估,以替代人工专家阅读 | 慢性阻塞性肺疾病(COPD)患者的胸部CT图像 | 数字病理学 | 慢性阻塞性肺疾病 | 深度学习、多参数冻结增长算法、强度自相关 | 深度学习网络 | 胸部CT图像 | 3231名COPDGene研究参与者的40,050个椎体,其中120个扫描用于训练和验证深度学习模型,236个低剂量CT扫描用于通用性验证 |
1896 | 2025-01-19 |
Automated deep learning segmentation of high-resolution 7 Tesla postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases
2024-May-01, Imaging neuroscience (Cambridge, Mass.)
DOI:10.1162/imag_a_00171
PMID:39301426
|
研究论文 | 本文介绍了一种用于高分辨率7特斯拉死后MRI的自动深度学习分割方法,用于神经退行性疾病的结构-病理相关性定量分析 | 开发了一个深度学习管道,通过基准测试九种深度神经架构的性能来分割皮质层,并进行后处理拓扑校正 | 由于标记数据集的有限可用性以及扫描仪硬件和采集协议的异质性,自动分割方法在死后MRI中的应用尚未充分发展 | 开发自动分割方法以链接病理学测量与形态测量学测量 | 死后人类脑组织样本 | 数字病理学 | 阿尔茨海默病 | 7T MRI, T2w序列, T2*w FLASH序列 | 深度神经网络 | MRI图像 | 135个死后人类脑组织样本,其中82个样本有阿尔茨海默病连续诊断 |
1897 | 2025-01-19 |
NON-CARTESIAN SELF-SUPERVISED PHYSICS-DRIVEN DEEP LEARNING RECONSTRUCTION FOR HIGHLY-ACCELERATED MULTI-ECHO SPIRAL FMRI
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
DOI:10.1109/isbi56570.2024.10635551
PMID:39669313
|
研究论文 | 本文提出了一种基于物理驱动的深度学习(PD-DL)重建方法,用于加速多回波螺旋fMRI的10倍重建 | 本文的创新点在于将自监督学习算法修改并应用于非笛卡尔轨迹的优化训练,以实现高时空分辨率的多回波螺旋fMRI重建 | NA | 研究目的是通过深度学习技术加速多回波螺旋fMRI的重建,以提高时空分辨率 | 多回波螺旋fMRI数据 | 医学影像处理 | NA | 深度学习 | PD-DL网络 | fMRI图像数据 | NA |
1898 | 2025-01-19 |
Human-airway surface mesh smoothing based on graph convolutional neural networks
2024-Apr, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108061
PMID:38341897
|
研究论文 | 本文提出了一种基于图卷积神经网络(GCNNs)的无监督气道网格平滑学习方法(AMSL),用于保留三维气道几何形状,以进行精确的CT图像计算流体动力学(CFD)模拟 | 引入了一种新的无监督气道网格平滑学习方法(AMSL),该方法通过联合训练两个图卷积神经网络来过滤顶点位置和面法向量,并采用深度网格先验模型的概念,无需大量数据集进行训练 | 研究仅使用了20名受试者的气道图像进行平滑处理,其中仅两名受试者的数据用于CFD模拟,样本量较小 | 开发一种能够保留三维气道几何形状的平滑方法,以进行精确的CT图像计算流体动力学(CFD)模拟 | 气道几何形状 | 计算机视觉 | NA | CT图像计算流体动力学(CFD)模拟 | 图卷积神经网络(GCNNs) | 图像 | 20名受试者的气道图像 |
1899 | 2025-01-19 |
Investigating distributions of inhaled aerosols in the lungs of post-COVID-19 clusters through a unified imaging and modeling approach
2024-Apr-01, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
IF:4.3Q1
DOI:10.1016/j.ejps.2024.106724
PMID:38340875
|
研究论文 | 本研究通过结合成像和建模方法,调查了COVID-19后遗症患者肺部吸入气溶胶的分布情况 | 利用深度学习算法识别出COVID-19后遗症患者的两个集群,并通过计算模型分析预测了这两个集群的气道阻力和颗粒沉积情况 | 样本量相对较小,且仅包括COVID-19幸存者和健康对照组 | 评估COVID-19后遗症患者集群中吸入气溶胶的分布情况 | COVID-19幸存者和健康对照组 | 数字病理学 | COVID-19 | CT扫描和计算模型分析 | 深度学习算法 | CT图像 | 140名COVID-19幸存者和105名健康对照组 |
1900 | 2025-01-19 |
Mapping cell-to-tissue graphs across human placenta histology whole slide images using deep learning with HAPPY
2024-Mar-28, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-46986-2
PMID:38548713
|
研究论文 | 本文介绍了一种名为HAPPY的深度学习分层方法,用于量化胎盘组织学全切片图像中细胞和微解剖组织结构的变异性 | HAPPY方法不同于基于补丁的特征或分割方法,它遵循可解释的生物层次结构,在全切片图像中以单细胞分辨率表示细胞和组织中的细胞群落 | NA | 开发一种深度学习方法来准确评估胎盘病理学,以管理母婴健康 | 胎盘组织学全切片图像 | 数字病理学 | NA | 深度学习 | NA | 图像 | 健康足月胎盘和具有临床显著胎盘梗死的胎盘 |