本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
201 | 2024-10-05 |
Developing a deep learning model for sleep stage prediction in obstructive sleep apnea cohort using 60 GHz frequency-modulated continuous-wave radar
2024-02, Journal of sleep research
IF:3.4Q2
DOI:10.1111/jsr.14050
PMID:37752626
|
研究论文 | 本研究利用60 GHz调频连续波雷达和注意力机制的双向长短期记忆模型,对阻塞性睡眠呼吸暂停患者的睡眠阶段进行预测 | 首次使用60 GHz调频连续波雷达结合注意力机制的双向长短期记忆模型进行睡眠阶段预测,并展示了多雷达数据结合的优势 | 模型性能随OSA严重程度增加而下降,但通过增加雷达数据可以部分缓解 | 开发一种非侵入性且成本效益高的睡眠阶段预测方法,以替代传统的多导睡眠图分类 | 阻塞性睡眠呼吸暂停患者的睡眠阶段 | 机器学习 | 阻塞性睡眠呼吸暂停 | 60 GHz调频连续波雷达 | 注意力机制的双向长短期记忆模型 | 雷达数据 | 78名阻塞性睡眠呼吸暂停患者 |
202 | 2024-10-04 |
Diffusion Posterior Sampling for Nonlinear CT Reconstruction
2024-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3007693
PMID:39238882
|
研究论文 | 本文提出了一种基于扩散后验采样的新方法,用于非线性CT图像重建 | 本文创新性地将扩散模型与非线性物理模型结合,实现了无需额外训练的通用非线性CT图像重建 | 当前方法仅依赖于线性化的X射线CT物理模型,本文方法解决了这一局限性 | 解决CT图像重建中的非线性问题 | CT图像重建 | 计算机视觉 | NA | 扩散模型 | 扩散模型 | 图像 | 在低剂量数据和稀疏视图几何中进行了验证 |
203 | 2024-10-03 |
Human selection bias drives the linear nature of the more ground truth effect in explainable deep learning optical coherence tomography image segmentation
2024-02, Journal of biophotonics
IF:2.0Q3
DOI:10.1002/jbio.202300274
PMID:37795556
|
研究论文 | 研究了人类选择偏差对可解释深度学习光学相干断层扫描图像分割中更多真实数据效应线性性质的影响 | 发现了真实数据模糊性与更多真实数据对预测性能的积极影响之间的可量化线性关系 | 深度学习模型在重复训练后未能实现自主改进 | 探讨人类选择偏差对深度学习模型在光学相干断层扫描图像分割中预测性能的影响 | 深度学习模型在光学相干断层扫描图像分割中的预测性能 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 多次实验,每次实验重复三次 |
204 | 2024-09-26 |
Multi_CycGT: A Deep Learning-Based Multimodal Model for Predicting the Membrane Permeability of Cyclic Peptides
2024-02-08, Journal of medicinal chemistry
IF:6.8Q1
DOI:10.1021/acs.jmedchem.3c01611
PMID:38270541
|
研究论文 | 提出了一种基于深度学习的多模态模型Multi_CycGT,用于预测环肽的膜通透性 | 首次尝试使用深度学习方法预测环肽的膜通透性,结合图卷积网络和变压器提取一维和二维特征 | 未提及 | 加速环肽活性药物的设计 | 环肽的膜通透性 | 机器学习 | NA | 图卷积网络(GCN)和变压器 | 多模态模型 | 环肽数据 | 未提及具体数量 |
205 | 2024-09-26 |
Registration of Longitudinal Spine CTs for Monitoring Lesion Growth
2024-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3006621
PMID:39310216
|
研究论文 | 本文提出了一种自动对齐纵向脊柱CT图像并准确评估病变进展的新方法 | 采用两步流水线方法,首先使用深度学习模型自动定位和标记椎骨并生成3D表面,然后使用高斯混合模型进行表面配准 | 仅在37个椎骨和5名患者的有限数据集上进行了测试 | 开发一种自动且鲁棒的纵向脊柱图像配准方法,以评估疾病进展和手术效果 | 纵向脊柱CT图像及其病变进展 | 计算机视觉 | NA | 深度学习模型,高斯混合模型 | 深度学习模型 | CT图像 | 37个椎骨,5名患者,共111次配准 |
206 | 2024-09-25 |
A web-based tool for real-time adequacy assessment of kidney biopsies
2024-Feb-05, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.02.01.24302147
PMID:38370740
|
研究论文 | 介绍了一种基于网络的工具,用于实时评估肾活检的充分性 | 开发了一种基于深度学习的自动分割技术,用于从智能手机拍摄的照片中实时量化评估肾活检的充分性 | 仅限于使用智能手机拍摄的照片进行评估,且需要预先训练的数据集 | 开发一种工具,以减少因活检不充分而导致的重新活检需求 | 肾活检的充分性评估 | 数字病理学 | NA | 深度学习 | NA | 图像 | 100例肾活检图像 |
207 | 2024-09-19 |
Regression-based Deep-Learning predicts molecular biomarkers from pathology slides
2024-Feb-10, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-45589-1
PMID:38341402
|
研究论文 | 本文开发并评估了一种基于回归的深度学习方法,用于从病理切片中直接预测连续的分子生物标志物 | 本文提出了一种基于回归的深度学习方法,相较于传统的分类方法,能够更准确地预测连续的生物标志物,并提高了与已知临床相关区域的对应性 | NA | 开发和评估一种新的深度学习方法,用于从病理切片中直接预测连续的分子生物标志物 | 从11,671张病理切片图像中预测多种临床和生物学相关的生物标志物,包括同源重组缺陷评分和肿瘤微环境中关键生物过程的标志物 | 数字病理学 | NA | 深度学习 | 回归模型 | 图像 | 11,671张病理切片图像,涵盖九种癌症类型 |
208 | 2024-09-14 |
StructuralDPPIV: a novel deep learning model based on atom structure for predicting dipeptidyl peptidase-IV inhibitory peptides
2024-02-01, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae057
PMID:38305458
|
研究论文 | 本文介绍了一种名为StructuralDPPIV的新型深度学习模型,用于预测二肽基肽酶IV抑制肽 | StructuralDPPIV模型结合了氨基酸的分子图特征和序列信息,显著优于现有的最先进方法 | NA | 开发一种有效的工具来发现二肽基肽酶IV抑制肽,以缓解糖尿病的影响 | 二肽基肽酶IV抑制肽的预测 | 机器学习 | 糖尿病 | 深度学习 | 深度学习模型 | 分子图特征和序列信息 | 独立测试数据集和两个湿实验数据集 |
209 | 2024-09-14 |
T-S2Inet: Transformer-based sequence-to-image network for accurate nanopore sequence recognition
2024-02-01, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae083
PMID:38366607
|
研究论文 | 本文提出了一种基于Transformer的序列到图像网络T-S2Inet,用于提高纳米孔序列识别的准确性 | 本文创新性地提出了一个序列到图像(S2I)模块,将不等长序列转换为图像,并结合Transformer模型捕捉重要信息,从而提高分类准确性 | NA | 提高纳米孔序列识别的准确性 | 纳米孔序列数据 | 机器学习 | NA | 纳米孔测序 | Transformer | 序列数据 | NA |
210 | 2024-09-14 |
Geometry-complete perceptron networks for 3D molecular graphs
2024-02-01, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae087
PMID:38373819
|
研究论文 | 本文介绍了一种新的几何感知SE(3)-等变图神经网络GCPNet,用于3D生物分子图的表示学习 | GCPNet能够学习3D分子的重要手性属性并检测外部力场,适用于多种不变或等变节点级、边级和图级任务 | NA | 开发一种新的图神经网络模型,用于3D生物分子图的表示学习 | 3D生物分子图及其手性属性和外部力场 | 机器学习 | NA | 几何深度学习 | 图神经网络 | 3D分子图 | 涉及四个不同的分子几何任务 |
211 | 2024-09-14 |
Phenotype prediction from single-cell RNA-seq data using attention-based neural networks
2024-02-01, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae067
PMID:38390963
|
研究论文 | 本文提出了一种基于注意力机制神经网络的单细胞RNA测序数据表型预测方法ScRAT | ScRAT通过使用mixup模块增加训练样本数量,并采用多头注意力机制学习每个表型中最具信息量的细胞,无需依赖给定的细胞类型注释 | NA | 开发一种能够在有限样本数量下准确预测疾病表型的方法 | 单细胞RNA测序数据中的细胞表型 | 生物信息学 | 冠状病毒病 | 单细胞RNA测序 | 注意力机制神经网络 | 基因表达数据 | 三个公开的COVID数据集 |
212 | 2024-09-13 |
A deep learning approach to remove contrast from contrast-enhanced CT for proton dose calculation
2024-Feb, Journal of applied clinical medical physics
IF:2.0Q3
DOI:10.1002/acm2.14266
PMID:38269961
|
研究论文 | 本文提出了一种深度学习方法,用于从增强CT图像中生成非增强CT图像,以减少质子剂量计算中的不确定性 | 开发了一种深度网络,能够直接从增强CT图像生成非增强CT图像,避免了额外的非增强CT扫描,减少了成像时间和辐射剂量,并降低了组织运动引起的不确定性 | 研究仅在20名患者的腹部CT图像上进行了验证,结果显示在质子束路径的远端存在显著的剂量差异 | 开发一种方法,用于从增强CT图像生成非增强CT图像,以减少质子剂量计算中的不确定性 | 增强CT和非增强CT图像,以及质子剂量计算 | 计算机视觉 | NA | 深度学习 | 深度网络 | 图像 | 20名患者的腹部增强CT和非增强CT图像对,以及8000个图像块对 |
213 | 2024-09-07 |
Deep learning MRI-only synthetic-CT generation for pelvis, brain and head and neck cancers
2024-02, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2023.110052
PMID:38096921
|
研究论文 | 本文验证了使用深度学习算法生成的合成CT(sCT)在骨盆、脑部和头颈部癌症中的剂量学准确性 | 本文采用了cycle-GAN算法生成sCT,并验证了其在不同扫描仪和序列下的剂量学准确性 | NA | 验证深度学习生成的合成CT在不同癌症部位的剂量学准确性 | 骨盆、脑部和头颈部癌症的合成CT生成 | 计算机视觉 | 头颈部癌症 | 深度学习 | cycle-GAN | MRI和CT图像 | 骨盆49例,脑部25例,头颈部30例 |
214 | 2024-09-07 |
Uncertainty-aware MR-based CT synthesis for robust proton therapy planning of brain tumour
2024-02, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2023.110056
PMID:38104781
|
研究论文 | 本文开发了一种不确定性感知的框架,用于从MR图像生成高质量的合成CT图像,并评估其在质子治疗计划中的效率 | 本文的创新点在于引入了不确定性预测,并将其应用于质子治疗计划的鲁棒优化中 | NA | 开发和评估一种不确定性感知的框架,以提高基于MR的CT合成在质子治疗计划中的临床应用 | 脑肿瘤患者的MR和CT图像 | 机器学习 | 脑肿瘤 | 生成对抗网络 | 条件生成对抗网络 | 图像 | 64名脑肿瘤患者 |
215 | 2024-09-04 |
Sparks of function by de novo protein design
2024-Feb, Nature biotechnology
IF:33.1Q1
DOI:10.1038/s41587-024-02133-2
PMID:38361073
|
研究论文 | 本文探讨了通过深度学习方法在从头蛋白质设计中实现功能性蛋白质设计的进展 | 利用深度学习方法提高了结构建模的效率和准确性,并促进了成功设计的丰富化 | NA | 探索从头蛋白质设计中功能性蛋白质设计的新进展及其对未来挑战的影响 | 蛋白质设计中的序列、结构协同设计和构象控制 | 机器学习 | NA | 深度学习 | NA | NA | NA |
216 | 2024-08-27 |
Ultrafast Brain MRI with Deep Learning Reconstruction for Suspected Acute Ischemic Stroke
2024-02, Radiology
IF:12.1Q1
DOI:10.1148/radiol.231938
PMID:38376403
|
研究论文 | 本研究旨在评估深度学习加速的磁共振成像(DL-accelerated MRI)与传统MRI在疑似急性缺血性卒中患者中的可互换性 | 本研究首次前瞻性地评估了深度学习加速MRI重建在急性疑似卒中中的诊断性能 | NA | 探讨深度学习加速MRI与传统MRI在疑似急性缺血性卒中患者中的可互换性 | 211名疑似急性卒中患者 | 计算机视觉 | 脑血管疾病 | 深度学习 | NA | 图像 | 211名参与者 |
217 | 2024-08-24 |
A Deep Learning Pipeline Using Prior Knowledge for Automatic Evaluation of Placenta Accreta Spectrum Disorders With MRI
2024-02, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28770
PMID:37177832
|
研究论文 | 本文开发了一种利用先验知识进行磁共振成像(MRI)自动评估胎盘植入谱(PAS)障碍的深度学习(DL)流程 | 该研究利用了胎盘植入谱相关迹象通常沿子宫胎盘边缘线(UPB)发现的先验知识,通过UPB图像和胎盘位置信息提高了PAS诊断的准确性 | NA | 开发一种深度学习工具,用于使用T2加权MR图像进行产前PAS诊断 | 540名临床疑似PAS障碍的孕妇 | 机器学习 | 胎盘植入谱障碍 | 磁共振成像(MRI) | DenseNet | 图像 | 540名孕妇,分为训练集(409)、内部测试集(103)和外部测试集(28) |
218 | 2024-08-24 |
Deep Learning Detection and Segmentation of Brain Arteriovenous Malformation on Magnetic Resonance Angiography
2024-02, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28795
PMID:37220191
|
研究论文 | 本研究开发了一种基于深度学习的方法,用于在时间飞跃磁共振血管成像上检测和分割脑动静脉畸形 | 本研究采用了YOLOv5和YOLOv8算法进行病变检测,以及U-Net和U-Net++模型进行核心分割,提高了临床实践效率 | 本研究为回顾性研究,且样本量相对较小 | 开发一种自动检测和分割脑动静脉畸形的方法,以提高临床实践效率 | 221名脑动静脉畸形患者 | 计算机视觉 | 脑动静脉畸形 | 时间飞跃磁共振血管成像 | YOLOv5, YOLOv8, U-Net, U-Net++ | 图像 | 221名患者,分为177个训练样本,22个验证样本和22个测试样本 |
219 | 2024-08-24 |
Prenatal Diagnosis of Placenta Accreta Spectrum Disorders: Deep Learning Radiomics of Pelvic MRI
2024-02, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28787
PMID:37222638
|
研究论文 | 本研究探讨了基于磁共振成像的深度学习放射组学模型在诊断胎盘植入谱系障碍中的应用 | 本研究首次使用深度学习放射组学方法量化胎盘植入谱系障碍的磁共振成像特征,并开发了一个结合放射组学特征、临床模型和磁共振形态学模型的诊断模型 | 研究为回顾性研究,且样本来自两家机构,可能存在一定的偏倚 | 探索基于磁共振成像的深度学习放射组学是否能有效识别胎盘植入谱系障碍的妊娠 | 324名疑似胎盘植入谱系障碍的孕妇 | 机器学习 | 妇产科疾病 | 深度学习放射组学 | 深度学习模型 | 磁共振成像 | 324名孕妇,其中206名确诊为胎盘植入谱系障碍,118名非胎盘植入谱系障碍 |
220 | 2024-08-24 |
Suitability of DNN-based vessel segmentation for SIRT planning
2024-Feb, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-023-03005-x
PMID:37535263
|
研究论文 | 本研究评估了基于深度神经网络(DNN)的血管分割在选择性内部放射治疗(SIRT)规划中的适用性 | 深度学习方法在肝动脉分割中优于传统的机器学习算法,显示出在SIRT规划中的应用潜力 | 尽管深度学习方法在大多数情况下表现良好,但仍有部分病例的分割结果不适合用于SIRT规划 | 评估基于DNN的血管分割在SIRT治疗前介入规划中的适用性 | 肝动脉的分割质量及整体图像质量 | 计算机视觉 | 肝癌 | 深度学习 | DNN | 图像 | 36例增强计算机断层扫描(CT)扫描 |