本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41 | 2025-03-08 |
EDLNet: ensemble deep learning network model for automatic brain tumor classification and segmentation
2024-Feb-12, Journal of biomolecular structure & dynamics
IF:2.7Q2
DOI:10.1080/07391102.2024.2311343
PMID:38345061
|
研究论文 | 本文提出了一种新的集成深度学习网络模型(EDLNet),用于自动脑肿瘤分类和分割 | 提出了一种新的集成深度学习网络模型(EDLNet),结合了改进的Faster RCNN方法和深度循环卷积神经网络(DRCNN),用于脑肿瘤的早期分类和分割 | 未提及具体局限性 | 开发一种高效的深度学习模型,用于脑肿瘤的自动分类和分割 | 脑MRI扫描图像 | 数字病理学 | 脑肿瘤 | 深度学习 | EDLNet(集成深度学习网络模型),改进的Faster RCNN,DRCNN(深度循环卷积神经网络) | 图像(MRI扫描图像) | 两个公开数据集(D1和D2),具体样本数量未提及 |
42 | 2025-03-08 |
Intelligent deep learning-based disease monitoring system in 5G network using multi-disease big data
2024-Feb-09, Journal of biomolecular structure & dynamics
IF:2.7Q2
DOI:10.1080/07391102.2024.2310785
PMID:38334127
|
研究论文 | 本文提出了一种基于深度学习的智能疾病监测系统,利用5G网络和多疾病大数据进行疾病预测和分类 | 提出了一种改进的基于捕食者存在概率的松鼠搜索-萤火虫群优化算法(MPPP-SSGSO)来优化模型参数,并采用集成增强模型和模糊分类器进行疾病预测和分类 | 未提及具体的数据来源和样本多样性,可能限制了模型的泛化能力 | 开发一种高效的疾病监测系统,以降低死亡率并提高疾病预测的准确性 | 患者的多疾病大数据 | 机器学习 | 多疾病 | 1D-CNN, AdaBoost, XGBoost, CatBoost, 模糊分类器 | 1D-CNN, 集成增强模型, 模糊分类器 | 多疾病大数据 | 未明确提及样本数量 |
43 | 2025-03-05 |
Deep learning segmentation of the choroid plexus from structural magnetic resonance imaging (MRI): validation and normative ranges across the adult lifespan
2024-Feb-29, Fluids and barriers of the CNS
IF:5.9Q1
DOI:10.1186/s12987-024-00525-9
PMID:38424598
|
研究论文 | 本文提出了三种深度学习模型,用于从常见的解剖MRI数据中分割脉络丛,并报告了性能指标和成年期内的变化 | 提出了三种深度学习模型,用于从常见的解剖MRI数据中分割脉络丛,并提供了跨成年期的脉络丛体积变化示例 | 样本量相对较小(n=50),且主要关注成年期内的变化,未涵盖更广泛的人群 | 改进和验证脉络丛体积的量化方法,以更好地研究其在神经退行性疾病中的作用 | 成年期内的控制组和神经退行性疾病参与者的脉络丛 | 医学影像分析 | 神经退行性疾病 | 深度学习 | 全卷积神经网络(FCN) | 3D T1加权、3D T2加权和2D T2加权FLAIR MRI图像 | 50名参与者(年龄21-85岁)用于训练和验证,98名成年控制组(年龄21-89岁)用于扩展队列 |
44 | 2025-03-05 |
Deep learning segmentation of peri-sinus structures from structural magnetic resonance imaging: validation and normative ranges across the adult lifespan
2024-Feb-13, Fluids and barriers of the CNS
IF:5.9Q1
DOI:10.1186/s12987-024-00516-w
PMID:38350930
|
研究论文 | 本文提出了一种深度学习架构,用于自动分割脑周窦结构,如蛛网膜颗粒和旁矢状硬膜空间,通过3D T2加权非对比MRI图像进行验证,并提供了这些结构在成人生命周期中的规范范围 | 开发了一种新的深度学习架构,首次实现了对脑周窦结构的自动分割,无需外源性对比剂和手动描绘 | 研究依赖于特定类型的MRI图像(3D T2加权非对比MRI),可能限制了方法的广泛应用 | 开发并验证一种自动化工具,用于量化脑周窦结构的体积,以研究神经流体循环功能障碍 | 脑周窦结构,包括蛛网膜颗粒和旁矢状硬膜空间 | 数字病理学 | NA | 3D T2加权非对比MRI | 3D全卷积神经网络 | 图像 | 80例用于验证,1,872例健康参与者用于提供生命周期中的规范范围 |
45 | 2025-03-05 |
Enhancing Hierarchical Transformers for Whole Brain Segmentation with Intracranial Measurements Integration
2024-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3009084
PMID:39220623
|
研究论文 | 本文提出了一种增强的分层Transformer模型UNesT,用于全脑分割,并整合颅内测量,以提高脑结构分析的全面性 | 通过增强现有的分层Transformer模型UNesT,实现了同时分割133个全脑类别和颅内测量(TICV/PFV),解决了数据稀缺问题 | 数据可用性受限,手动注释的全脑和TICV/PFV标签的图谱有限 | 提高全脑分割的全面性,整合颅内测量 | 全脑分割和颅内测量(TICV/PFV) | 计算机视觉 | NA | 磁共振成像(MRI) | 分层Transformer UNesT | 3D T1加权(T1w)图像 | 预训练使用4859个T1w 3D体积,微调使用45个T1w 3D体积 |
46 | 2025-03-04 |
Spatiotemporal profiling defines persistence and resistance dynamics during targeted treatment of melanoma
2024-Feb-05, bioRxiv : the preprint server for biology
DOI:10.1101/2024.02.02.577085
PMID:38370717
|
研究论文 | 本文通过空间转录组学和深度学习技术,研究了BRAF突变黑色素瘤在靶向治疗中的持久性和耐药性动态 | 利用空间转录组学捕捉克隆谱系演化,结合深度学习分析组织病理学切片,揭示了黑色素瘤治疗中的状态变化和谱系选择 | 研究主要基于患者来源的异种移植模型,可能无法完全反映人体内的复杂环境 | 研究BRAF突变黑色素瘤在靶向治疗中的持久性和耐药性机制 | BRAF突变黑色素瘤细胞 | 数字病理学 | 黑色素瘤 | 空间转录组学,深度学习 | 深度学习 | 转录组数据,组织病理学图像 | 患者来源的异种移植模型 |
47 | 2025-02-24 |
NnU-Net versus mesh growing algorithm as a tool for the robust and timely segmentation of neurosurgical 3D images in contrast-enhanced T1 MRI scans
2024-Feb-20, Acta neurochirurgica
IF:1.9Q2
DOI:10.1007/s00701-024-05973-8
PMID:38376564
|
研究论文 | 本研究评估了nnU-Net在对比增强T1(T1CE)图像中分割大脑、皮肤、肿瘤和脑室的性能,并与现有的网格生长算法(MGA)进行了对比 | nnU-Net在分割大脑、皮肤、肿瘤和脑室方面显著优于MGA,且速度更快,减少了手动调整和迭代的需求 | 训练集规模较小,可能影响模型的泛化能力 | 评估nnU-Net在神经外科3D图像分割中的性能 | 对比增强T1(T1CE)图像中的大脑、皮肤、肿瘤和脑室 | 计算机视觉 | 神经外科疾病 | 对比增强T1 MRI扫描 | nnU-Net | 3D图像 | 67个用于训练的T1CE脑部扫描和32个用于测试的扫描 |
48 | 2025-02-24 |
Applied deep learning in neurosurgery: identifying cerebrospinal fluid (CSF) shunt systems in hydrocephalus patients
2024-Feb-07, Acta neurochirurgica
IF:1.9Q2
DOI:10.1007/s00701-024-05940-3
PMID:38321344
|
研究论文 | 本研究评估了AI辅助的脑脊液分流阀检测系统在神经外科中的可行性 | 使用深度学习模型自动识别X射线或CT图像中的不同分流阀模型,提高识别速度和准确性 | 数据集仅包含2070张图像,可能不足以涵盖所有分流阀类型 | 评估AI辅助分流阀检测系统在神经外科中的可行性 | 脑脊液分流阀 | 计算机视觉 | 脑积水 | 深度学习 | CNN | 图像 | 2070张X射线或CT图像,涵盖10种不同的分流阀类型 |
49 | 2025-02-21 |
High-Precision Microscale Particulate Matter Prediction in Diverse Environments Using a Long Short-Term Memory Neural Network and Street View Imagery
2024-Feb-27, Environmental science & technology
IF:10.8Q1
DOI:10.1021/acs.est.3c06511
PMID:38355131
|
研究论文 | 本研究提出了一种新颖的长短期记忆(LSTM)神经网络模型,利用从街景图像中提取的颜色特征(HSV:色调、饱和度、亮度)来估计四种典型欧洲环境中的空气质量(颗粒物PM) | 创新点在于使用LSTM神经网络结合街景图像的颜色特征来预测多种环境下的颗粒物浓度,并展示了模型在时间和空间维度上的良好泛化能力 | 研究仅基于德国奥格斯堡市非供暖季节的数据,未涵盖全年数据,且模型在其他城市和季节的适用性需进一步验证 | 研究目的是开发一种高精度的颗粒物预测模型,以支持城市规划和公共健康倡议 | 研究对象为四种典型欧洲环境(城市、郊区、村庄和港口)中的颗粒物浓度 | 计算机视觉 | NA | LSTM神经网络 | LSTM | 图像、浓度数据 | 德国奥格斯堡市非供暖季节的移动监测平台数据及同步街景图像 |
50 | 2025-02-21 |
Single Person Identification and Activity Estimation in a Room from Waist-Level Contours Captured by 2D Light Detection and Ranging
2024-Feb-17, Sensors (Basel, Switzerland)
DOI:10.3390/s24041272
PMID:38400430
|
研究论文 | 本文提出了一种使用2D激光雷达在房间内进行人员识别和活动估计的新方法 | 利用深度学习技术从2D激光雷达数据中提取人体轮廓并进行人员识别和活动估计,创新性地比较了LSTM和VGG16两种深度学习模型的效果 | 2D激光雷达在腰部高度捕获的点云数据包含的步态特征较少,可能影响识别精度 | 开发用于家庭老年人监控的社交辅助机器人,确保隐私不受侵犯 | 房间内的居民及其活动 | 计算机视觉 | 老年疾病 | 2D激光雷达 | LSTM, VGG16 | 点云数据 | 四名参与者,共收集了120分钟的步行数据和100分钟的额外活动数据(开门、坐下和站立) |
51 | 2025-02-21 |
Enhancing Stress Detection: A Comprehensive Approach through rPPG Analysis and Deep Learning Techniques
2024-Feb-07, Sensors (Basel, Switzerland)
DOI:10.3390/s24041096
PMID:38400254
|
研究论文 | 本文提出了一种基于远程光电容积描记术(rPPG)和深度学习技术的压力检测方法,旨在通过面部视频实现高效的压力检测 | 本文提出了新颖的混合深度学习网络,结合LSTM、GRU和1D-CNN模型,并通过超参数优化和数据增强技术提高压力检测的准确性和效率 | NA | 提高压力检测的准确性和效率,特别是在远程压力监测领域 | 面部视频数据 | 计算机视觉 | NA | 远程光电容积描记术(rPPG) | LSTM, GRU, 1D-CNN | 视频 | UBFC-Phys数据集 |
52 | 2025-02-17 |
Characterizing Anti-Vaping Posts for Effective Communication on Instagram Using Multimodal Deep Learning
2024-Feb-15, Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco
IF:3.0Q2
DOI:10.1093/ntr/ntad189
PMID:38366336
|
研究论文 | 本研究旨在通过人工智能识别Instagram上反电子烟图片帖子中与高社交媒体用户参与度相关的关键特征 | 利用深度学习模型和统计模型识别反电子烟Instagram图片帖子中与高用户参与度显著相关的特征 | 研究主要基于Instagram平台,可能不适用于其他社交媒体平台 | 识别反电子烟Instagram图片帖子中与高社交媒体用户参与度相关的关键特征 | Instagram上的反电子烟图片帖子 | 自然语言处理 | NA | 深度学习模型(OpenAI: contrastive language-image pre-training with ViT-B/32)和统计模型(负二项回归模型) | CNN(ViT-B/32) | 图像和文本 | 8972个反电子烟Instagram图片帖子,其中2200个手工编码 |
53 | 2025-02-13 |
Discovery of a structural class of antibiotics with explainable deep learning
2024-Feb, Nature
IF:50.5Q1
DOI:10.1038/s41586-023-06887-8
PMID:38123686
|
研究论文 | 本文介绍了一种基于可解释深度学习的抗生素结构类别发现方法 | 提出了一种基于子结构的可解释深度学习方法,用于高效探索化学空间并预测抗生素的结构类别 | 需要进一步验证所发现的结构类别在其他细菌感染模型中的效果 | 发现新型抗生素结构类别以应对抗生素耐药性危机 | 化学化合物 | 机器学习 | 细菌感染 | 图神经网络 | 图神经网络 | 化学结构数据 | 39,312种化合物的抗生素活性和细胞毒性数据,以及12,076,365种化合物的预测数据 |
54 | 2025-02-09 |
Longitudinal single-cell transcriptional dynamics throughout neurodegeneration in SCA1
2024-Feb-07, Neuron
IF:14.7Q1
DOI:10.1016/j.neuron.2023.10.039
PMID:38016472
|
研究论文 | 本文通过纵向单核RNA测序技术,研究了小鼠和人类脊髓小脑共济失调1型(SCA1)小脑组织中各细胞群在神经退行过程中的动态变化 | 首次定义了在Purkinje细胞丢失之前的精确转录变化,并识别了单极刷细胞和少突胶质细胞中的早期转录失调 | NA | 研究神经退行性疾病中不同细胞类型在疾病发生和进展中的作用 | 小鼠和人类SCA1小脑组织 | 数字病理学 | 神经退行性疾病 | 单核RNA测序 | 深度学习 | RNA测序数据 | NA |
55 | 2025-02-08 |
3D Convolutional Deep Learning for Nonlinear Estimation of Body Composition from Whole-Body Morphology
2024-Feb-13, Research square
DOI:10.21203/rs.3.rs-3935042/v1
PMID:38410459
|
研究论文 | 本文探讨了使用非线性参数化和回归模型替代线性模型,以提高从3D光学扫描中估计全身和区域体成分的精度和准确性 | 首次将深度3D卷积图网络应用于人体成分建模,使用图卷积3D自编码器(3DAE)替代线性PCA,并采用非线性高斯过程回归(GPR)进行预测 | 深度形状特征仅提高了男性体成分的准确性,而对女性的准确性提升不明显 | 提高从3D光学扫描中估计全身和区域体成分的精度和准确性 | 人体体成分 | 计算机视觉 | NA | 3D光学扫描,双能X射线吸收法(DXA) | 图卷积3D自编码器(3DAE),高斯过程回归(GPR) | 3D光学扫描数据 | 4286个拓扑标准化的3D光学扫描,来自四个不同的人体形状数据库(DFAUST, CAESAR, Shape Up! Adults, Shape Up! Kids),测试集包含424个随机保留的测试网格 |
56 | 2025-02-08 |
Robust single-shot 3D fluorescence imaging in scattering media with a simulator-trained neural network
2024-Feb-12, Optics express
IF:3.2Q2
DOI:10.1364/OE.514072
PMID:38439332
|
研究论文 | 本文开发了一种基于模拟器训练的深度神经网络,用于在散射介质中进行单次3D荧光成像 | 提出了一种新的散射模拟器,并训练了一个仅使用合成数据的深度神经网络,用于从单次光场测量中去除散射并重建3D体积 | 深度学习模型对真实实验数据的泛化能力受到网络设计因素和分布外数据的影响 | 解决散射介质中的3D荧光成像问题,提高成像深度和信号背景比 | 散射介质中的荧光成像 | 计算机视觉 | NA | 光场系统 | 深度神经网络 | 图像 | 不同散射条件下的散射体模 |
57 | 2025-02-05 |
Application of deep learning and feature selection technique on external root resorption identification on CBCT images
2024-Feb-19, BMC oral health
IF:2.6Q1
DOI:10.1186/s12903-024-03910-w
PMID:38373931
|
研究论文 | 本研究旨在评估四种深度学习模型在外部牙根吸收(ERR)识别中的表现,并探讨结合特征选择技术(FST)对模型识别能力的影响 | 结合特征选择技术与深度学习模型,提高了外部牙根吸收识别的准确性 | 研究仅基于模拟的外部牙根吸收数据,未涉及真实临床数据 | 评估深度学习模型在外部牙根吸收识别中的表现,并探讨特征选择技术对模型性能的影响 | 88颗拔除的前磨牙 | 计算机视觉 | 牙科疾病 | Cone beam CT | Random Forest (RF) + Visual Geometry Group 16 (VGG), RF + EfficienNetB4 (EFNET), Support Vector Machine (SVM) + VGG, SVM + EFNET | 图像 | 88颗前磨牙 |
58 | 2025-02-05 |
Improving deep learning protein monomer and complex structure prediction using DeepMSA2 with huge metagenomics data
2024-Feb, Nature methods
IF:36.1Q1
DOI:10.1038/s41592-023-02130-4
PMID:38167654
|
研究论文 | 本文介绍了DeepMSA2管道,利用基因组和宏基因组序列数据库进行迭代比对搜索,显著提高了蛋白质三级和四级结构预测的准确性 | DeepMSA2通过平衡的比对搜索和有效的模型选择,结合庞大的宏基因组数据库,显著提升了蛋白质结构预测的准确性 | 未明确提及具体限制 | 提高深度学习蛋白质单体及复合物结构预测的准确性 | 蛋白质单体和复合物结构 | 机器学习 | NA | 宏基因组测序 | 深度学习 | 序列数据 | 大规模基准测试 |
59 | 2025-02-03 |
Defining the boundaries: challenges and advances in identifying cells in microscopy images
2024-02, Current opinion in biotechnology
IF:7.1Q1
DOI:10.1016/j.copbio.2023.103055
PMID:38142646
|
研究论文 | 本文探讨了在显微镜图像中识别细胞的挑战和进展,特别是分割技术的改进 | 深度学习工具在细胞分割技术中的主导地位增强,如Cellpose模型的准确性和用户友好性提升 | NA | 提高显微镜图像中细胞分割的准确性和效率 | 显微镜图像中的细胞 | 计算机视觉 | NA | 深度学习 | Cellpose | 图像 | NA |
60 | 2025-02-03 |
Transformer-based deep learning denoising of single and multi-delay 3D arterial spin labeling
2024-Feb, Magnetic resonance in medicine
IF:3.0Q2
DOI:10.1002/mrm.29887
PMID:37849048
|
研究论文 | 本文提出了一种基于Swin Transformer的深度学习模型(SwinIR),用于去噪单延迟和多延迟3D动脉自旋标记(ASL),并与卷积神经网络(CNN)和其他基于Transformer的方法进行了性能比较 | 首次将Swin Transformer应用于ASL数据的去噪,并在性能上超越了CNN和其他基于Transformer的方法 | 使用M0作为输入时,虽然提高了图像质量,但引入了更大的CBF量化偏差 | 提高3D ASL数据的图像质量,减少扫描时间,以促进其临床应用 | 单延迟和多延迟3D ASL数据 | 计算机视觉 | NA | 深度学习 | SwinIR, CNN | 3D图像 | 66名受试者(119次扫描)用于训练,39名受试者(44次扫描)用于测试,另外6名受试者(10次扫描)用于多延迟ASL数据 |