深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202402-202402] [清除筛选条件]
当前共找到 293 篇文献,本页显示第 81 - 100 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
81 2025-10-07
Discovery of a structural class of antibiotics with explainable deep learning
2024-Feb, Nature IF:50.5Q1
研究论文 通过可解释深度学习发现新型抗生素结构类别 开发了基于可解释图算法的深度学习方法来识别与抗生素活性相关的化学亚结构,突破了传统黑箱模型的局限 仅测试了283种化合物的实验验证,样本规模相对有限 发现新型抗生素结构类别以应对抗生素耐药性危机 化学化合物及其对金黄色葡萄球菌的抗生素活性 机器学习 细菌感染 图神经网络,可解释图算法 图神经网络 化学结构数据 39,312个化合物的实验数据,12,076,365个化合物的预测数据 NA 图神经网络集成 抗生素活性预测准确率,细胞毒性预测准确率 NA
82 2025-10-07
Longitudinal single-cell transcriptional dynamics throughout neurodegeneration in SCA1
2024-Feb-07, Neuron IF:14.7Q1
研究论文 通过纵向单细胞转录组测序研究SCA1神经退行性疾病过程中不同细胞类型的动态变化 首次建立小鼠和人类SCA1小脑组织的连续动态轨迹,发现浦肯野细胞丢失前的精确转录变化,并识别出单极刷细胞和少突胶质细胞的早期转录失调 NA 解析异质组织中不同细胞类型在神经退行性疾病发病机制和进展中的作用 小鼠和人类脊髓小脑性共济失调1型(SCA1)小脑组织 生物信息学 神经退行性疾病 单核RNA测序, 深度学习 深度学习模型 单细胞转录组数据 NA NA NA 疾病状态预测准确度 NA
83 2025-10-07
3D Convolutional Deep Learning for Nonlinear Estimation of Body Composition from Whole-Body Morphology
2024-Feb-13, Research square
研究论文 本研究使用3D卷积深度学习技术从全身形态学数据中非线性估计身体成分 首次将深度3D卷积图网络应用于人体成分建模,用非线性参数化和回归模型替代传统线性方法 深度形状特征仅改善了男性身体成分的准确性,对两性精度的改善程度不同 提高从全身3D光学扫描中估计身体成分的精度和准确性 人体身体成分估计 计算机视觉 代谢综合征 3D光学扫描,双能X射线吸收测量法(DXA) 图卷积自编码器,高斯过程回归 3D网格数据,图像 4286个拓扑标准化的3D光学扫描,来自四个不同的人体形状数据库 NA 3D自编码器,图卷积网络 均方根误差,精度,决定系数(R) NA
84 2025-10-07
Robust single-shot 3D fluorescence imaging in scattering media with a simulator-trained neural network
2024-Feb-12, Optics express IF:3.2Q2
研究论文 开发了一种基于模拟器训练的神经网络方法,用于在散射介质中实现鲁棒的单次3D荧光成像 开发了散射模拟器生成合成数据,并仅使用合成数据训练深度神经网络实现单次光场测量的3D重建 深度学习模型对超出分布数据的泛化能力存在限制,需要分析网络设计因素对泛化性的影响 解决散射介质中荧光成像的深度限制问题,实现高效的三维体积重建 散射介质中的荧光发射体 计算成像 NA 荧光显微镜,光场成像 深度神经网络 光场测量数据,合成数据 不同散射条件下的散射模型 NA NA 信背比(SBR),成像深度 NA
85 2025-10-07
Application of deep learning and feature selection technique on external root resorption identification on CBCT images
2024-Feb-19, BMC oral health IF:2.6Q1
研究论文 本研究应用深度学习和特征选择技术识别CBCT图像中的牙根外吸收 首次评估四种深度学习模型在牙根外吸收识别中的性能,并探索特征选择技术与深度学习模型结合的效果 研究使用模拟牙根外吸收的离体牙齿,样本量相对较小(88颗前磨牙) 评估深度学习模型在牙根外吸收识别中的性能,并研究特征选择技术对模型性能的改进效果 88颗离体前磨牙上模拟的不同深度(0.5mm、1mm、2mm)牙根外吸收病变 计算机视觉 牙科疾病 锥形束CT成像 Random Forest, Support Vector Machine, CNN 医学影像 88颗离体前磨牙 NA VGG16, EfficientNetB4 准确率, F1分数, 精确率, 特异性, 错误率, AUC NA
86 2025-10-07
Improving deep learning protein monomer and complex structure prediction using DeepMSA2 with huge metagenomics data
2024-Feb, Nature methods IF:36.1Q1
研究论文 本文介绍了DeepMSA2流程,通过整合宏基因组数据提升蛋白质单体及复合体结构预测精度 开发了平衡比对搜索与有效模型选择的统一流程,整合海量宏基因组数据库显著提升结构预测精度 NA 通过改进多序列比对构建方法提升深度学习蛋白质结构预测性能 蛋白质单链和多链结构 机器学习 NA 宏基因组测序 深度学习 基因组序列数据,蛋白质结构数据 大规模基准测试数据集 NA AlphaFold2-Multimer 结构预测精度 NA
87 2025-02-03
Defining the boundaries: challenges and advances in identifying cells in microscopy images
2024-02, Current opinion in biotechnology IF:7.1Q1
研究论文 本文探讨了在显微镜图像中识别细胞的挑战和进展,特别是分割技术的改进 深度学习工具在细胞分割技术中的主导地位增强,如Cellpose模型的准确性和用户友好性提升 NA 提高显微镜图像中细胞分割的准确性和效率 显微镜图像中的细胞 计算机视觉 NA 深度学习 Cellpose 图像 NA NA NA NA NA
88 2025-02-03
Detecting major depressive disorder presence using passively-collected wearable movement data in a nationally-representative sample
2024-Feb, Psychiatry research IF:4.2Q1
研究论文 本研究探讨了利用腕戴式活动记录仪数据结合机器学习和深度学习技术检测重度抑郁症(MDD)的效用 结合传统机器学习方法和深度学习卷积神经网络(CNN)方法,利用被动收集的活动记录仪数据检测MDD,并识别出与MDD相关的生物标志物 研究依赖于PHQ-9作为MDD筛查工具,可能存在筛查偏差 探索利用被动收集的活动记录仪数据结合机器学习技术检测MDD的潜力 8,378名参与者,其中766名参与者通过PHQ-9筛查为MDD 机器学习 重度抑郁症 机器学习和深度学习 传统机器学习方法和CNN 活动记录仪数据 8,378名参与者,其中766名通过PHQ-9筛查为MDD NA NA NA NA
89 2025-02-03
Nonmetastatic Axillary Lymph Nodes Have Distinct Morphology and Immunophenotype in Obese Patients with Breast Cancer at Risk for Metastasis
2024-02, The American journal of pathology
研究论文 本研究使用深度学习模型识别肥胖乳腺癌患者非转移性腋窝淋巴结的形态学差异,并探讨其与淋巴结转移的潜在机制 首次通过深度学习模型揭示肥胖乳腺癌患者非转移性腋窝淋巴结的形态学差异,并初步发现脂肪替代淋巴结中CD3表达减少和瘦素表达增加的趋势 研究样本量较小(180例),且免疫组化分析仅基于30例患者的子集,结果需要进一步验证 探讨肥胖乳腺癌患者非转移性腋窝淋巴结的形态学差异及其与淋巴结转移的潜在机制 肥胖乳腺癌患者的非转移性腋窝淋巴结 数字病理学 乳腺癌 深度学习模型、免疫组化分析 深度学习模型 图像(H&E染色全切片图像) 180例乳腺癌患者(其中30例用于免疫组化分析) NA NA NA NA
90 2025-10-07
Respiratory signal estimation for cardiac perfusion SPECT using deep learning
2024-Feb, Medical physics IF:3.2Q1
研究论文 本研究开发了一种基于深度学习的方法,仅使用SPECT投影数据估计呼吸信号,用于心脏灌注成像中的呼吸运动校正 首次提出使用改进的U-Net网络直接从SPECT投影数据估计呼吸信号,无需外部跟踪设备 研究依赖于外部立体相机视觉跟踪系统作为训练目标信号,且样本量相对有限 开发仅使用SPECT投影数据的深度学习方法进行呼吸信号估计,以改善心脏灌注SPECT图像质量 心脏灌注SPECT成像中的呼吸运动伪影 医学影像分析 心血管疾病 SPECT成像,深度学习 CNN SPECT投影数据 900名接受负荷心脏灌注SPECT研究的受试者(302名测试,598名训练验证) NA 改进的U-Net Pearson相关系数,平均绝对差异 NA
91 2025-02-03
Flexible protein-protein docking with a multitrack iterative transformer
2024-Feb, Protein science : a publication of the Protein Society IF:4.5Q1
研究论文 本文介绍了一种名为GeoDock的多轨迭代变压器网络,用于从分离的对接伙伴预测对接结构,解决了现有蛋白质-蛋白质对接方法在结合诱导构象变化方面的局限性 GeoDock在蛋白质残基水平上具有灵活性,能够预测结合时的构象变化,且在DIPS测试集上达到了43%的top-1成功率,优于其他测试方法 尽管GeoDock在预测结合诱导的构象变化方面有所突破,但由于训练和评估数据的限制,这仍然是一个挑战 开发一种能够处理结合诱导构象变化的蛋白质-蛋白质对接方法,以提高对接成功率和应用效率 蛋白质-蛋白质对接 机器学习 NA 多轨迭代变压器网络 Transformer 序列和结构数据 DIPS测试集、DB5.5测试集和抗体-抗原复合物基准数据集 NA NA NA NA
92 2025-10-07
Applying deep learning to recognize the properties of vitreous opacity in ophthalmic ultrasound images
2024-02, Eye (London, England)
研究论文 本研究探索基于深度学习的AI技术自动识别眼科超声图像中玻璃体混浊性质的可行性 首次将深度学习应用于眼科超声图像中玻璃体混浊性质的自动识别 样本量相对有限(2000张图像),仅包含三种典型玻璃体混浊类型 开发自动识别眼科超声图像中玻璃体混浊性质的AI系统 眼科超声图像中的玻璃体混浊病变 计算机视觉 眼科疾病 灰度多普勒超声成像 CNN 图像 2000张灰度多普勒超声图像,包含正常眼和三种玻璃体混浊类型 NA ResNet, GoogLeNet Inception V1 准确率, 精确率, 召回率, F1分数, AUC NA
93 2025-10-07
Deep-learning based automated quantification of critical optical coherence tomography features in neovascular age-related macular degeneration
2024-Feb, Eye (London, England)
研究论文 开发并验证基于深度学习的算法,用于自动量化新生血管性年龄相关性黄斑变性中的关键OCT特征 首次使用深度学习算法对nAMD中的三种关键液体类型(IRF、SRF、nPED)进行自动化分割和量化 样本量较小(仅50名患者),为回顾性研究 验证深度学习算法在新生血管性年龄相关性黄斑变性中自动分割视网膜内液体、视网膜下液体和新生血管性色素上皮脱离的性能 50名渗出性新生血管性年龄相关性黄斑变性患者(50只眼)的光学相干断层扫描数据 计算机视觉 年龄相关性黄斑变性 光学相干断层扫描(OCT) 深度学习 医学图像 50名患者(50只眼) NA NA AUC, Dice系数, 相关系数(R2) NA
94 2025-10-07
Image quality assessment of retinal fundus photographs for diabetic retinopathy in the machine learning era: a review
2024-Feb, Eye (London, England)
综述 评估糖尿病视网膜病变公开数据集中使用的图像质量评估方法和质量标准 首次系统评估糖尿病视网膜病变公开数据集中的图像质量评估现状,提出自动化质量评估可作为手动标注的有效替代方案 仅纳入20个数据集,部分数据集质量标准信息难以获取 分析糖尿病视网膜病变数据集中图像质量评估的应用现状和标准 20个公开的糖尿病视网膜病变数据集 数字病理 糖尿病视网膜病变 图像质量评估 深度学习算法 视网膜眼底图像 20个公开数据集 NA NA NA NA
95 2025-02-03
Deep learning enables the discovery of a novel cuproptosis-inducing molecule for the inhibition of hepatocellular carcinoma
2024-Feb, Acta pharmacologica Sinica IF:6.9Q1
研究论文 本研究利用深度学习技术从ZINC15化合物库中筛选出新型肝癌抑制剂LGOd1,并发现其通过干扰铜稳态诱导铜死亡的新机制 首次发现具有左旋葡糖烯酮支架的化合物LGOd1可通过非离子载体机制诱导铜死亡,代表了一类新型铜死亡诱导剂 未明确说明实验样本的具体数量和研究模型的局限性 发现新型抗肝癌化合物并研究其作用机制 肝细胞癌(HCC)细胞系 药物发现 肝细胞癌 深度学习筛选、化学表征分析 深度学习模型 化学化合物数据 超过600万种ZINC15化合物库中的化合物 NA NA NA NA
96 2025-02-03
A Deep Learning-Based Radiomic Classifier for Usual Interstitial Pneumonia
2024-Feb, Chest IF:9.5Q1
研究论文 本文开发了一种基于深度学习的放射组学分类器,用于通过胸部CT扫描诊断普通型间质性肺炎(UIP) 利用卷积神经网络(CNN)从CT扫描中学习UIP的离散特征,并结合线性支持向量机进行预测,展示了在广泛UIP患病率下的良好测试性能 研究为回顾性队列研究,可能存在选择偏倚,且需要进一步验证在更广泛人群中的适用性 开发一种基于深度学习的工具,用于标准化CT扫描解释,以诊断普通型间质性肺炎(UIP) 患有和未患有间质性肺病(ILD)的个体的胸部CT扫描 计算机视觉 间质性肺病 深度学习 卷积神经网络(CNN) 图像 共2,907例胸部CT扫描,包括训练集(n=1,934)、验证集(n=408)和性能测试集(n=565) NA NA NA NA
97 2025-02-03
Movienet: Deep space-time-coil reconstruction network without k-space data consistency for fast motion-resolved 4D MRI
2024-Feb, Magnetic resonance in medicine IF:3.0Q2
研究论文 本文提出了一种名为Movienet的深度学习新方法,用于4D-MRI重建,通过利用空间-时间-线圈相关性和运动保留而非k空间数据一致性,加速黄金角度径向数据的采集,并实现动态MRI中的亚秒级重建时间 Movienet采用U-net架构,通过修改的残差学习块在图像域中完全操作,以去除混叠伪影并重建无混叠的运动分辨4D图像,同时通过线性运动顺序排序输入图像和参考图像来强制运动保留 NA 开发一种新的深度学习方法来加速4D-MRI的重建,以在临床环境中实现快速运动抵抗的3D解剖成像或运动分辨的4D成像 腹部肿瘤的运动分辨4D MRI和运动抵抗3D MRI 医学影像 腹部肿瘤 深度学习 U-net MRI图像 在1.5T MR-Linac和3T MRI扫描仪上进行了演示 NA NA NA NA
98 2025-02-03
Investigating pulse-echo sound speed estimation in breast ultrasound with deep learning
2024-Feb, Ultrasonics IF:3.8Q1
研究论文 本文提出了一种基于深度学习的监督学习方法,用于从分析超声信号中估计声速,以提高乳腺超声图像的质量和疾病识别能力 提出了一种新的深度学习方法来估计乳腺超声中的声速,通过模拟数据集训练全卷积神经网络,生成估计的声速图 模型主要基于模拟数据进行训练,尽管在模拟、幻影和体内乳腺超声数据上进行了评估,但在真实临床数据上的表现仍需进一步验证 提高乳腺超声图像的质量和疾病识别能力 乳腺组织,包括腺体组织、脂肪和病变 计算机视觉 乳腺癌 深度学习 全卷积神经网络 超声信号 大规模模拟超声数据集,包括模拟乳腺组织样本、幻影和体内乳腺超声数据 NA NA NA NA
99 2025-10-07
Using Genomics to Identify Novel Therapeutic Targets for Aortic Disease
2024-02, Arteriosclerosis, thrombosis, and vascular biology
综述 探讨基因组学结合机器学习技术在主动脉疾病治疗靶点发现中的应用与前景 系统阐述深度学习技术加速主动脉疾病遗传学发现的创新路径,提出从遗传关联到生物学洞察的转化蓝图 未涉及具体临床验证数据,主要聚焦方法论层面的探讨 探索基因组学在主动脉疾病治疗靶点识别中的应用价值 主动脉疾病(包括夹层、动脉瘤和破裂)的遗传基础与表型特征 机器学习 心血管疾病 基因组学、深度学习、高通量功能筛选 深度学习 影像数据、遗传数据 NA NA NA NA NA
100 2025-10-07
The Breakthrough of Large Language Models Release for Medical Applications: 1-Year Timeline and Perspectives
2024-Feb-17, Journal of medical systems IF:3.5Q2
综述 本文回顾了2023年大型语言模型在医疗领域的发展时间线,并探讨了其应用前景与挑战 首次系统梳理了2023年度医疗领域大型语言模型的发布脉络,并提出了向通用生物医学AI系统演进的发展视角 技术发展速度过快导致信息可能不够全面,对模型具体应用效果缺乏实证数据支持 概述近期发布的LLMs在医学领域的潜在应用,探讨安全有效的应用前景 大型语言模型及其在医疗领域的应用 自然语言处理 慢性病管理 Transformer架构,预训练技术 LLM 文本 NA NA Transformer NA 大规模计算资源
回到顶部