本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
261 | 2024-08-05 |
The association between DNA methylation and human height and a prospective model of DNA methylation-based height prediction
2024-Mar, Human genetics
IF:3.8Q2
DOI:10.1007/s00439-024-02659-0
PMID:38507014
|
研究论文 | 本研究探讨了DNA甲基化与人类身高之间的关系,并构建了一个基于DNA甲基化的身高预测模型。 | 使用仅959个CpG位点的靶向甲基化测序结合深度学习技术,提供了比基于SNP预测模型更高的身高预测准确性。 | 样本主要针对中国人群,可能限制了研究结果的普遍适用性。 | 研究DNA甲基化与人类身高之间的关联,并基于此构建身高预测模型。 | 研究对象为与身高相关的DNA甲基化位点。 | 数字病理学 | NA | 靶向甲基化测序 | 深度神经网络 | NA | 11,730个与身高相关的位点 |
262 | 2024-08-05 |
Deep Learning-Based Kernel Adaptation Enhances Quantification of Emphysema on Low-Dose Chest CT for Predicting Long-Term Mortality
2024-Mar-01, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001003
PMID:37428617
|
研究论文 | 本研究旨在利用深度学习的核适应技术来量化低剂量胸部CT上的肺气肿,以预测长期死亡率 | 该研究首次将深度学习应用于低剂量CT的核适应,显著改善了肺气肿的量化结果 | 研究仅限于60岁及以上的无症状个体,可能不适用于其他人群 | 调查低剂量CT量化肺气肿对长期死亡率的预测价值 | 从2009年到2016年期间进行健康检查的5178名无症状个体的低剂量CT图像 | 数字病理学 | NA | 低剂量计算机断层扫描 (LDCT), 深度学习 | Cox比例风险模型 | 影像 | 5178名参与者 |
263 | 2024-08-05 |
[Development and Application of Deep Learning-Based Model for Quality Control of Children Pelvic X-Ray Images]
2024-Mar-30, Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation
DOI:10.12455/j.issn.1671-7104.240010
PMID:38605612
|
研究论文 | 提出了一种基于深度学习的方法用于评估儿童髋关节X光图像的质量 | 首次尝试将人工智能算法应用于儿童髋关节X光的质量评估 | NA | 构建诊断模型并验证其临床可行性 | 3247名儿童的前后髋部X光片 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 3247个儿童的前后髋部X光图像 |
264 | 2024-08-05 |
A Review for Artificial Intelligence Based Protein Subcellular Localization
2024-Mar-27, Biomolecules
IF:4.8Q1
DOI:10.3390/biom14040409
PMID:38672426
|
review | 本文回顾了基于人工智能的蛋白质亚细胞定位方法最新进展 | 文章的创新点在于整合了三种典型的基于人工智能的定位方法,并讨论了该领域的未来方向 | 文章未深入探讨具体的实验验证和实际应用案例 | 研究人工智能在蛋白质亚细胞定位中的应用与发展 | 主要研究各种类型的蛋白质定位方法 | 生物信息学 | 癌症、阿尔茨海默病 | 人工智能,机器学习 | 深度学习 | 序列、知识、图像 | NA |
265 | 2024-08-05 |
Distinct chemical environments in biomolecular condensates
2024-Mar, Nature chemical biology
IF:12.9Q1
DOI:10.1038/s41589-023-01432-0
PMID:37770698
|
研究论文 | 这篇文章探讨了生物分子凝聚体中的不同化学环境及其对分子分布的影响 | 文章首次表明不同的生物分子凝聚体具有独特的化学溶剂特性,并且可以通过深度学习方法预测探针在这些凝聚体内的选择性分配 | 在古典条件下对背景环境的影响未能详细探讨 | 研究无膜生物分子聚集体中分子的选择性包含机制 | 重点研究不同类型的生物分子凝聚体及其化学环境 | 数字病理学 | NA | 深度学习 | NA | 小分子探针 | NA |
266 | 2024-08-05 |
Deep Learning Promotes Profiling of Multiple miRNAs in Single Extracellular Vesicles for Cancer Diagnosis
2024-03-22, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.3c02789
PMID:38442411
|
研究论文 | 本研究介绍了一种通过深度学习检测单个外泌体中多种miRNA的方法,以用于癌症诊断。 | 首次结合全内反射荧光成像与深度学习算法对单个外泌体进行多miRNA特征分析,克服了外泌体异质性带来的挑战。 | 尚未提及其他癌症种类的验证,且样本量相对较小。 | 旨在通过单个外泌体分析提高癌症的早期诊断准确性。 | 研究对象为来自5种癌细胞和正常血浆的外泌体。 | 数字病理学 | 肺癌 | 全内反射荧光成像(TIRF)和深度学习(DL) | NA | 图像 | 共分析了25名患者(5名肺癌、5名乳腺癌、5名宫颈癌和5名结肠癌)及5名健康对照 |
267 | 2024-08-05 |
Investigation of Deepfake Voice Detection Using Speech Pause Patterns: Algorithm Development and Validation
2024-Mar-21, JMIR biomedical engineering
DOI:10.2196/56245
PMID:38875685
|
研究论文 | 本研究探讨了利用语音暂停模式检测深度伪造音频的算法开发与验证 | 引入固有生物过程的概念以区分真实人声与克隆音频 | 样本量有限,可能影响模型的泛化能力 | 旨在识别真实和克隆人声之间的差异 | 49名具有不同种族和口音的成年人提供音频样本 | 计算机视觉 | NA | 机器学习 | AdaBoost模型 | 音频 | 49个成年参与者 |
268 | 2024-08-05 |
[Research Progress in Data Acquisition and Intelligent Sensing Methods for Lumbar Electromyographic Signals]
2024-Mar-30, Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation
DOI:10.12455/j.issn.1671-7104.240014
PMID:38605608
|
研究论文 | 该论文回顾了不同传感器获取腰部肌电信号的进展 | 提出了无线传感器与深度学习算法结合的研究方向 | 未提及具体的实验数据或样本分析 | 分析和干预老年人低背痛的肌电信号 | 腰部肌电信号及其相关传感器 | 智能感知 | 老年疾病 | 生物电信号获取 | 深度学习算法 | 电生理信号 | NA |
269 | 2024-08-05 |
D3EGFR: a webserver for deep learning-guided drug sensitivity prediction and drug response information retrieval for EGFR mutation-driven lung cancer
2024-Mar-27, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae121
PMID:38555474
|
研究论文 | 本研究建立了D3EGFR平台,以实现EGFR突变驱动的非小细胞肺癌药物敏感性预测和病例检索 | D3EGFR是首个实现所有已批准小分子药物的临床级药物反应预测的平台 | 研究可能缺乏对非EGFR突变驱动肺癌的适用性验证 | 旨在为EGFR突变驱动的非小细胞肺癌提供临床级药物推荐 | 包含来自1339名EGFR突变患者的临床病理特征和药物反应数据 | 数字病理学 | 肺癌 | 深度学习 | 深度学习模型D3EGFRAI | 临床数据 | 1339名EGFR突变患者 |
270 | 2024-08-05 |
KDGene: knowledge graph completion for disease gene prediction using interactional tensor decomposition
2024-Mar-27, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae161
PMID:38605639
|
研究论文 | 本文提出了一种基于交互张量分解的生物知识图谱补全框架KDGene,用于疾病基因预测 | KDGene通过引入交互模块,改善了知识图谱中实体和关系嵌入的表达能力,从而提高对疾病相关基因的预测准确性 | 目前的表示学习技术在应用于领域特定的生物数据时性能仍然不尽如人意 | 旨在通过构建生物知识图谱来提高对疾病相关基因的预测能力 | 疾病及其相关的基因 | 计算机视觉 | 疾病基因 | 张量分解 | NA | 生物知识图谱 | 实验结果未提供具体样本数量 |
271 | 2024-08-05 |
Pediatric ECG-Based Deep Learning to Predict Left Ventricular Dysfunction and Remodeling
2024-03-19, Circulation
IF:35.5Q1
|
研究论文 | 本文探讨了基于深度学习的ECG分析在儿童左心室功能障碍和重塑预测中的应用潜力 | 该研究首次将人工智能增强的ECG分析应用于儿童群体,且模型表现优于儿科心脏病专家基准 | 研究对象主要是无重大先天性心脏病的患者,可能限制了模型的泛化能力 | 评估基于深度学习的ECG分析在预测儿童左心室功能障碍和重塑的有效性 | 年龄不超过18岁且无重大先天性心脏病的儿童患者 | 机器学习 | 心血管疾病 | 卷积神经网络 | CNN | ECG和超声心动图 | 92377对ECG-超声心动图(46261名患者) |
272 | 2024-08-05 |
Artificial intelligence-guided detection of under-recognized cardiomyopathies on point-of-care cardiac ultrasound
2024-Mar-15, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.03.10.24304044
PMID:38559021
|
研究论文 | 本研究开发并验证了深度学习模型用于在床边心脏超声中检测未被充分诊断的心肌病 | 提出了一种新的适应性建模策略,以改善心脏超声图像的获取质量 | 研究主要基于回顾性病例数据,对于实时临床应用的验证不足 | 旨在提高对未被诊断的心肌病的识别率 | 基于大型美国医疗系统中不同医院的患者心脏超声数据进行研究 | 计算机视觉 | 心血管疾病 | 深度学习,卷积神经网络 (CNN) | 卷积神经网络 (CNN) | 视频 | 290,245个TTE视频和3,758个现实世界的POCUS视频 |
273 | 2024-08-05 |
A novel lightweight deep learning approach for simultaneous optic cup and optic disc segmentation in glaucoma detection
2024-Mar-04, Mathematical biosciences and engineering : MBE
DOI:10.3934/mbe.2024225
PMID:38872528
|
研究论文 | 该文章提出了一种轻量级深度学习方法用于青光眼检测中的视杯和视盘的同时分割 | 创新点在于采用模糊学习和多层感知器来简化学习复杂性并提高分割准确性 | 未提及具体的限制 | 研究青光眼检测中的视杯和视盘的自动分割方法 | 视杯(OC)和视盘(OD)在眼底图像中的分割 | 数字病理学 | 青光眼 | 深度学习 | 多层感知器 | 图像 | 未提及具体的样本量 |
274 | 2024-08-05 |
DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks
2024-03-26, Genes
IF:2.8Q2
DOI:10.3390/genes15040404
PMID:38674339
|
研究论文 | 本研究开发了一种名为DRANetSplicer的深度学习模型,用于增强剪接位点预测的准确性 | 该模型结合了残差学习和注意力机制,以准确捕捉剪接位点的复杂特征 | NA | 提高剪接位点识别的准确性,以便更好地进行基因注释 | 采用来自三种不同生物的基因组数据构建多个数据集进行模型训练 | 机器学习 | NA | 深度学习 | 深度残差注意力网络 | 基因组数据 | 来自三种不同生物的多个高质量数据集 |
275 | 2024-08-05 |
Combining Deep Learning and Radiomics for Automated, Objective, Comprehensive Bone Mineral Density Assessment From Low-Dose Chest Computed Tomography
2024-03, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.08.030
PMID:37730494
|
研究论文 | 本文开发了一种基于低剂量胸部计算机断层扫描的智能骨密度筛查模型 | 该研究结合了深度学习和放射组学,创建了一个完全自动化的骨密度评估流程 | 缺乏不同人种和年龄段的广泛验证 | 研究旨在开发智能诊断模型用于骨质疏松症筛查 | 研究对象为442名接受低剂量胸部CT和定量CT检查的参与者 | 数字病理 | 骨质疏松症 | 低剂量胸部计算机断层扫描 (LDCT) | VB-Net | 影像 | 共442名参与者 |
276 | 2024-08-05 |
Characterization of organic fouling on thermal bubble-driven micro-pumps
2024 Mar-Apr, Biofouling
IF:2.6Q1
DOI:10.1080/08927014.2024.2353034
PMID:38785127
|
研究论文 | 该文章研究了热泡驱动微泵与生物流体的相互作用,尤其是有机污垢对其性能的影响 | 首次探讨了热泡驱动微泵在与血液和富含蛋白质的液体接触时的有机污垢现象 | 当前研究仅集中在鸡蛋清和牛全血的影响上,未考虑其他类型的生物流体 | 了解热泡驱动微泵与生物流体的相互作用及其对泵性能的影响 | 主要研究对象是热泡驱动微泵在与鸡蛋清和牛全血接触时的污垢效应 | 微流体 | NA | 高速度成像和基于RESNET-18的深度学习神经网络 | NA | 图像 | NA |
277 | 2024-08-05 |
Development of MRI-Based Deep Learning Signature for Prediction of Axillary Response After NAC in Breast Cancer
2024-03, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.10.004
PMID:37914627
|
研究论文 | 本研究开发了一种基于MRI的深度学习特征,用于预测乳腺癌患者在新辅助化疗后腋窝反应 | 本研究利用深度学习从动态对比增强MRI中提取特征,并提出了一种新的预测模型 | NA | 开发一种用于预测乳腺癌患者在新辅助化疗后腋窝反应的MRI基础深度学习特征 | 327名乳腺癌患者,这些患者在新辅助化疗后接受腋窝手术 | 医学影像学 | 乳腺癌 | 动态对比增强MRI | 支持向量机 | 医学影像 | 327名乳腺癌患者 |
278 | 2024-08-05 |
Shortening Acquisition Time and Improving Image Quality for Pelvic MRI Using Deep Learning Reconstruction for Diffusion-Weighted Imaging at 1.5 T
2024-03, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.06.035
PMID:37500416
|
研究论文 | 本研究探讨使用深度学习重建技术对1.5T下骨盆扩散加权成像的采集时间和图像质量的影响 | 创新地应用深度学习技术来缩短扩散加权成像的采集时间并提高图像质量 | 研究仅限于单一中心,样本量相对较小且为回顾性研究 | 研究骨盆MRI的扩散加权成像中,深度学习重建对采集时间和图像质量的影响 | 55名患者接受了标准扩散加权成像和深度学习重建的扩散加权成像 | 数字病理学 | NA | 深度学习重建 | NA | 图像 | 55名患者(年龄范围27至89岁) |
279 | 2024-08-05 |
Test Retest Reproducibility of Organ Volume Measurements in ADPKD Using 3D Multimodality Deep Learning
2024-03, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.09.009
PMID:37798206
|
研究论文 | 本研究利用3D多模态深度学习降低ADPKD患者的器官体积测量变异性 | 使用多种脉冲序列进行器官体积测量,通过异常值分析和平均值计算减少了变异性 | 样本量相对较小,只有19名ADPKD患者参与了重复测试 | 减少ADPKD患者MRI图像上的器官体积测量变异性 | 413名受试者的MRI和CT影像数据被用于训练和验证模型 | 数字病理学 | 多囊肾病 | MRI | nnU-net | 影像 | 19名ADPKD患者的38次扫描 |
280 | 2024-08-05 |
Deep learning for water quality
2024-Mar-12, Nature water
DOI:10.1038/s44221-024-00202-z
PMID:38846520
|
综述 | 本综述探讨了深度学习在水质研究中的应用潜力 | 提出深度学习可以填补时空数据缺口,并识别影响水质的关键因素 | 传统基于过程的模型与统计模型在预测水质时通常表现不佳 | 探讨深度学习在水质科学中的应用及其优势 | 聚焦于内陆水体质量的理解与预测 | 数字病理学 | NA | 深度学习 | NA | 高维数据 | NA |