深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202403-202403] [清除筛选条件]
当前共找到 383 篇文献,本页显示第 381 - 383 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
381 2024-08-07
MicroSegNet: A deep learning approach for prostate segmentation on micro-ultrasound images
2024-03, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
研究论文 本文介绍了一种名为MicroSegNet的深度学习方法,用于在微超声图像上进行前列腺分割 提出了一个多尺度注释引导的transformer UNet模型,并引入了一种注释引导的二元交叉熵损失(AG-BCE),该损失在训练过程中对难以分割的区域赋予更大的权重 NA 开发一种新的深度学习模型,以提高微超声图像中前列腺分割的准确性 前列腺在微超声图像中的分割 计算机视觉 前列腺癌 微超声(micro-US) transformer UNet 图像 使用了来自55名患者的微超声图像进行训练,并在20名患者的数据上进行评估 NA NA NA NA
382 2024-08-07
NanoBERTa-ASP: predicting nanobody paratope based on a pretrained RoBERTa model
2024-Mar-21, BMC bioinformatics IF:2.9Q1
研究论文 本文介绍了一种名为NanoBERTa-ASP的新型纳米抗体预测模型,专门用于预测纳米抗体-抗原结合位点 该模型基于先进的自然语言处理模型BERT,采用RoBERTa方法学习纳米抗体序列的上下文信息,以准确预测其结合位点 现有的预测模型可能不适用于纳米抗体,且纳米抗体数据集的有限性对构建准确模型构成挑战 开发一种适用于纳米抗体的预测模型,以提高抗体工程、药物开发和免疫治疗的准确性 纳米抗体的结合位点预测 自然语言处理 NA RoBERTa BERT 序列数据 NA NA NA NA NA
383 2024-08-07
Slideflow: deep learning for digital histopathology with real-time whole-slide visualization
2024-Mar-27, BMC bioinformatics IF:2.9Q1
研究论文 本文介绍了一个名为Slideflow的灵活深度学习库,用于数字病理学,支持多种深度学习方法,并包含一个快速的全切片接口用于部署训练好的模型 Slideflow提供了独特的工具,如全切片图像数据处理、高效的染色标准化和增强、弱监督的全切片分类、不确定性量化、特征生成、特征空间分析和可解释性 NA 开发一个灵活的深度学习库,用于数字病理学,支持多种深度学习方法,并提供一个快速的全切片接口 数字病理学中的全切片图像分析 数字病理学 NA 深度学习 CNN 图像 NA NA NA NA NA
回到顶部