深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202403-202403] [清除筛选条件]
当前共找到 385 篇文献,本页显示第 381 - 385 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
381 2024-08-07
Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases
2024-Mar-23, Medicina (Kaunas, Lithuania)
综述 本文全面概述了人工智能(AI)在各种视网膜疾病中的应用,强调其提高筛查效率、促进早期诊断和改善患者结果的潜力 本文介绍了AI在视网膜疾病中的具体应用,如糖尿病视网膜病变(DR)、年龄相关性黄斑变性(AMD)等,并强调了AI驱动解决方案在处理视网膜疾病复杂性和变异性中的重要性 本文讨论了AI在临床实践中整合的挑战和缺陷,包括“黑箱现象”、数据表示中的偏见以及全面患者评估的局限性 旨在探讨AI在视网膜疾病诊断和管理中的应用,以及其在医疗保健中的协同作用 研究对象包括多种视网膜疾病,如糖尿病视网膜病变、年龄相关性黄斑变性等 计算机视觉 视网膜疾病 机器学习(ML)和深度学习(DL) 多种AI模型 图像 NA
382 2024-08-07
Rethinking automatic segmentation of gross target volume from a decoupling perspective
2024-03, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
研究论文 本文提出了一种异构级联框架(HCF),从解耦的角度将大目标体积(GTV)分割分解为独立的识别和分割子任务,以提高癌症放射治疗计划中GTV分割的准确性和可靠性。 设计了一个多级空间对齐网络(SANet)和组合正则化(CR)损失及平衡采样策略(BSS),以改善特征提取和解决像素不平衡问题。 NA 提高自动GTV分割的性能,特别是在减少假阳性和准确分割小物体方面。 大目标体积(GTV)在癌症放射治疗中的自动分割。 计算机视觉 NA 深度学习 CNN 图像 在StructSeg2019挑战的两个公共数据集上进行了广泛实验。
383 2024-08-07
MicroSegNet: A deep learning approach for prostate segmentation on micro-ultrasound images
2024-03, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
研究论文 本文介绍了一种名为MicroSegNet的深度学习方法,用于在微超声图像上进行前列腺分割 提出了一个多尺度注释引导的transformer UNet模型,并引入了一种注释引导的二元交叉熵损失(AG-BCE),该损失在训练过程中对难以分割的区域赋予更大的权重 NA 开发一种新的深度学习模型,以提高微超声图像中前列腺分割的准确性 前列腺在微超声图像中的分割 计算机视觉 前列腺癌 微超声(micro-US) transformer UNet 图像 使用了来自55名患者的微超声图像进行训练,并在20名患者的数据上进行评估
384 2024-08-07
NanoBERTa-ASP: predicting nanobody paratope based on a pretrained RoBERTa model
2024-Mar-21, BMC bioinformatics IF:2.9Q1
研究论文 本文介绍了一种名为NanoBERTa-ASP的新型纳米抗体预测模型,专门用于预测纳米抗体-抗原结合位点 该模型基于先进的自然语言处理模型BERT,采用RoBERTa方法学习纳米抗体序列的上下文信息,以准确预测其结合位点 现有的预测模型可能不适用于纳米抗体,且纳米抗体数据集的有限性对构建准确模型构成挑战 开发一种适用于纳米抗体的预测模型,以提高抗体工程、药物开发和免疫治疗的准确性 纳米抗体的结合位点预测 自然语言处理 NA RoBERTa BERT 序列数据 NA
385 2024-08-07
Slideflow: deep learning for digital histopathology with real-time whole-slide visualization
2024-Mar-27, BMC bioinformatics IF:2.9Q1
研究论文 本文介绍了一个名为Slideflow的灵活深度学习库,用于数字病理学,支持多种深度学习方法,并包含一个快速的全切片接口用于部署训练好的模型 Slideflow提供了独特的工具,如全切片图像数据处理、高效的染色标准化和增强、弱监督的全切片分类、不确定性量化、特征生成、特征空间分析和可解释性 NA 开发一个灵活的深度学习库,用于数字病理学,支持多种深度学习方法,并提供一个快速的全切片接口 数字病理学中的全切片图像分析 数字病理学 NA 深度学习 CNN 图像 NA
回到顶部