深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202405-202405] [清除筛选条件]
当前共找到 916 篇文献,本页显示第 321 - 340 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
321 2024-08-05
UltraAIGenomics: Artificial Intelligence-Based Cardiovascular Disease Risk Assessment by Fusion of Ultrasound-Based Radiomics and Genomics Features for Preventive, Personalized and Precision Medicine: A Narrative Review
2024-May, Reviews in cardiovascular medicine IF:1.9Q3
综述 该文章为心血管疾病风险评估提出了基于人工智能的综合方法。 提出了结合超声放射组学和基因组学特征的新方法,以提高心血管疾病风险评估的准确性。 仅基于246项研究的回顾,可能缺乏广泛的临床应用数据支持。 探讨如何通过融合基因组学和放射组学特征来改善心血管疾病的风险评估。 研究重点在于心血管疾病和中风的风险评估。 机器学习 心血管疾病 深度学习 DL模型 NA 246项研究
322 2024-08-05
A large-scale assessment of sequence database search tools for homology-based protein function prediction
2024-May-23, Briefings in bioinformatics IF:6.8Q1
研究论文 本文评估了不同序列数据库搜索工具在基于同源性的蛋白质功能预测中的效果 提出新的评分函数以改进基于同源性匹配的GO预测,并验证了搜索参数的重要性 没有探讨所有可能的顺序搜索工具和参数组合 探讨如何选择最佳序列搜索工具及其参数以提高蛋白质功能预测 主要研究热门的序列搜索工具对蛋白质功能预测的影响 机器学习 NA 序列数据库搜索 NA 基准数据集 大规模基准数据集
323 2024-08-05
Comprehensive single-cell RNA-seq analysis using deep interpretable generative modeling guided by biological hierarchy knowledge
2024-May-23, Briefings in bioinformatics IF:6.8Q1
研究论文 提出了一种名为d-scIGM的深度可解释生成模型,用于单细胞RNA-seq数据分析 d-scIGM结合锯齿连接技术和残差网络,构建了一个深度生成框架,并结合生物领域的层次性先验知识提高了模型的可解释性 大部分以往的生成模型工作局限于一到三层潜在变量的浅层神经网络 探索如何通过深度学习分析单细胞转录组数据并增加模型的可解释性 单细胞RNA-seq数据 数字病理学 黑色素瘤 RNA-seq 深度生成模型 基因表达数据 包含大规模实验的数据集
324 2024-08-05
Evaluation of deep learning-based reconstruction late gadolinium enhancement images for identifying patients with clinically unrecognized myocardial infarction
2024-May-31, BMC medical imaging IF:2.9Q2
研究论文 本研究比较了使用常规和深度学习重建技术识别未被确认心肌梗死患者的效果 本研究创新性地应用深度学习重建技术(LGEDL)以提高未被确认心肌梗死的诊断效率 研究仅在一个医院进行,样本量相对较小,可能限制结果的泛化性 评估深度学习重建的晚期铕增强图像在识别未被确认的心肌梗死患者中的有效性 98名有未被确认心肌梗死疑虑患者 计算机视觉 心血管疾病 深度学习重建 NA 图像 98名患者,68名男性,平均年龄:55.8±8.1岁
325 2024-08-05
Adoption of blockchain as a step forward in orthopedic practice
2024-May-24, European journal of translational myology IF:1.8Q3
研究论文 本文探讨区块链技术在骨科中的应用及其优点 将区块链与人工智能、机器学习和深度学习结合用于更准确的诊断和治疗建议 存在采用障碍和数据共享意愿等挑战 探索区块链在骨科实践中的潜在应用 区块链如何影响患者数据管理、骨科登记、医学成像和研究数据 NA NA 区块链技术 NA 数据 NA
326 2024-08-05
CELA-MFP: a contrast-enhanced and label-adaptive framework for multi-functional therapeutic peptides prediction
2024-May-23, Briefings in bioinformatics IF:6.8Q1
研究论文 该论文提出了一种名为CELA-MFP的深度学习框架,用于多功能治疗肽的预测 CELA-MFP结合了特征对比增强和标签适应的方法,优化了肽功能的预测 实验仅在两个广泛使用的数据集上进行了测试,可能影响泛化能力 研究功能肽的预测,以理解其多样的生物学效应和设计基于肽的治疗药物 功能肽及其相关序列 生物技术 NA 深度学习 Transformer 序列 两个数据集
327 2024-08-05
Introducing enzymatic cleavage features and transfer learning realizes accurate peptide half-life prediction across species and organs
2024-May-23, Briefings in bioinformatics IF:6.8Q1
研究论文 本文提出了一种新一代基于人工智能的系统,用于准确预测肽药物的半衰期 引入了酶裂解特征与传统肽特征相结合,构建了更好的表示,并通过迁移学习提高了预测准确性 NA 研究肽药物的半衰期预测,促进肽药物的发展 天然和修饰肽的半衰期,涉及人类和小鼠两种物种以及血液和肠道两个器官 机器学习 NA NA 深度学习模型,融合迁移学习 NA NA
328 2024-08-05
Discovering predisposing genes for hereditary breast cancer using deep learning
2024-May-23, Briefings in bioinformatics IF:6.8Q1
研究论文 本文探讨了利用深度学习发现遗传性乳腺癌的易感基因 提出了一种新的高通量变异分析管道,适用于家族研究,并采用先进的机器学习模型和三维蛋白质结构分析技术 研究样本主要集中在中东背景的12个家庭,可能限制了结果的广泛适用性 识别导致家族性乳腺癌的易感基因 分析了来自12个家庭的稀有错义变异 计算机视觉 乳腺癌 深度学习 NA 变异数据 1218个稀有错义变异
329 2024-08-05
Enhancing multi-class lung disease classification in chest x-ray images: A hybrid manta-ray foraging volcano eruption algorithm boosted multilayer perceptron neural network approach
2024-May-16, Network (Bristol, England)
研究论文 本研究提出了一种混合鯨鯊觅食火山喷发算法增强的多层感知器神经网络方法,用于多类肺疾病的分类 提出了一种新的混合算法以优化多层感知器的参数,并提高多类肺疾病的分类准确率 仍需解决稳定性和类别不平衡的问题 旨在提高胸部X光图像中多类肺疾病的分类准确性 研究对象为COVID-19、肺炎、结核(TB)和正常的胸部X光图像 计算机视觉 肺癌 多层感知器神经网络(MPNN)、ADKF、TF-IDF 多层感知器神经网络(MPNN) 图像 来自Covid-Chest X-ray数据集的胸部X光图像
330 2024-08-05
Accuracy of Artificial Intelligence in Predicting Facial Changes Post-Orthognathic Surgery: A Comprehensive Scoping Review
2024-May, Journal of clinical and experimental dentistry
综述 本文全面评估了人工智能在预测正颌手术后面部变化的准确性 创新点在于比较了AI与传统模型在面部变化预测中的优缺点 研究的局限性包括样本量小和缺乏外部验证 研究目的在于评估AI在正颌手术后预测面部变化的准确性 研究对象为使用AI模型进行正颌手术后结果预测的研究 机器学习 NA 机器学习和深度学习算法 NA NA 总共筛选了1579个记录,最终选择了7个符合条件的研究
331 2024-08-05
Incremental Trainable Parameter Selection in Deep Neural Networks
2024-May, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文探讨了利用深度学习模型的有效自由度(DoF)来正则化基于随机梯度下降(SGD)的训练 提出了增量可训练参数选择(ITPS)算法,该算法能够逐步选择对训练损失敏感的参数,从而增大模型的自由度 NA 旨在通过ITPS算法优化深度学习模型的参数选择 不同的神经网络架构,包括CNN、变换器、递归神经网络(RNN)和多层感知器 机器学习 NA SGD CNN, 变换器, RNN, 多层感知器 图像 使用公开数据集CIFAR-10, SLT-10和MIMIC-III进行训练
332 2024-08-05
The contribution of silencer variants to human diseases
2024-May-18, medRxiv : the preprint server for health sciences
研究论文 该研究分析了沉默子变异与人类疾病之间的关联 该文章通过深度学习模型对2.8百万候选沉默子进行了全面分析,并发现沉默子变异在某些疾病中的关联性远高于增强子变异 未提及具体的样本多样性和数据来源的局限性 本研究旨在揭示沉默子变异与人类疾病的关系 研究对象是来自多种组织和发育时间点的人类样本 机器学习 帕金森病, 精神分裂症, 疾病1型糖尿病 深度学习 NA 基因组变化数据 97个来自不同组织和发育时间点的人类样本
333 2024-08-05
Deep learning-based automatic measurement system for patellar height: a multicenter retrospective study
2024-May-31, Journal of orthopaedic surgery and research IF:2.8Q1
研究论文 本文开发了一种基于深度学习的膝盖髌骨高度自动测量系统,并评估其性能和泛化能力 该研究首次应用深度学习模型自动测量髌骨高度,显示出与手动测量相当的准确性和强泛化能力 本研究中数据集的选择可能存在偏差,未来需检验不同数据集以优化模型 研究旨在提高髌骨高度测量的准确性和效率,以辅助膝关节疾病的评估和治疗 本文的研究对象为来自三家三级医院的膝关节X光影像数据 数字病理学 NA 深度学习 HRNet和残差网络(ResNet) 图像 共计2,341例膝关节X光图像
334 2024-08-05
Deep Learning and Likelihood Approaches for Viral Phylogeography Converge on the Same Answers Whether the Inference Model Is Right or Wrong
2024-May-27, Systematic biology IF:6.1Q1
研究论文 本研究扩大和比较了基于深度学习的无似然推断方法与传统的似然方法在病毒系统地理学中的表现 提出了一种基于深度学习的无似然推断方法,与传统的贝叶斯推断方法在准确性和鲁棒性上接近,同时在训练后显著提高了计算速度 模型的精确度较低,且在模型失配的敏感度上有一定的保守性 探讨深度学习方法在病毒传播的系统地理学推断中的应用 使用模拟爆发的系统树和SARS-Cov-2大流行的真实数据 计算机视觉 NA 深度学习 深度神经网络 树形结构数据 来自5个地点的模拟爆发数据
335 2024-08-05
An adult and pediatric size-based contrast administration reduction phantom study for single and dual-energy CT through preservation of contrast-to-noise ratio
2024-May, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本文提供了一个定量框架,用于在降低碘对比剂剂量的同时保持碘CNR 创新性地通过单能CT和双能CT的不同扫描条件,减少碘对比剂的使用 未详细探讨不同患者群体对结果的影响 研究如何在CT检查中通过降低对比剂的剂量来保持图像质量 使用不同直径的模拟物进行CT扫描 数字病理学 NA CT 深度学习重建 影像 四种不同直径的模拟物(9.7, 15.9, 21.1, 28.5 cm 和 20, 29.5, 34.6, 39.7 cm)
336 2024-08-05
A novel deep machine learning algorithm with dimensionality and size reduction approaches for feature elimination: thyroid cancer diagnoses with randomly missing data
2024-May-23, Briefings in bioinformatics IF:6.8Q1
研究论文 本研究开发了一种新的深度机器学习算法用于甲状腺癌诊断,并处理随机缺失数据 创新点在于处理随机缺失数据和采用维度缩减及层次聚类算法来选择最具信息量的数据集 缺乏标准化的甲状腺癌诊断程序可能限制算法的广泛适用性 旨在开发一种准确且计算效率高的深度学习算法以诊断甲状腺癌 研究对象为多维大数据中存在随机缺失的甲状腺癌诊断数据 机器学习 甲状腺癌 深度学习算法 未指定 多维数据 使用了四种机器学习算法进行训练和测试,具体样本数量未说明
337 2024-08-05
Highly accurate classification and discovery of microbial protein-coding gene functions using FunGeneTyper: an extensible deep learning framework
2024-May-23, Briefings in bioinformatics IF:6.8Q1
研究论文 该文章介绍了FunGeneTyper,一个可扩展的深度学习框架,用于微生物蛋白编码基因功能的高精度分类和发现 提出了一种新的框架,包含两个新的深度学习模型,以及结构化数据库,旨在实现高于99%的分类准确率 NA 开发一种高效的工具,用于微生物蛋白编码基因的功能分类和抗生素抗性基因的发现 抗生素抗性基因(ARGs)和毒力因子基因的序列 生物信息学 NA 高通量DNA测序 FunTrans和FunRep 基因序列 由实验确认的抗生素抗性基因数据集,包含远程同源序列作为测试集
338 2024-08-05
Framework for Ranking Machine Learning Predictions of Limited, Multimodal, and Longitudinal Behavioral Passive Sensing Data: Combining User-Agnostic and Personalized Modeling
2024-May-20, JMIR AI
研究论文 该文章提出了一个框架,用于对有限的多模态和纵向行为被动传感数据的机器学习预测进行排序 引入了一种新的排名框架FLMS,结合用户无关和个性化建模方法,同时使用排名策略过滤预测 对于小数据集采用复杂深度学习网络建模的局限性,可能导致噪声影响 过滤、排名并输出小型多模态纵向传感数据的最佳预测 健康研究中使用被动多模态传感器的青少年数据集 机器学习 抑郁障碍 被动移动传感 NA 传感数据 青少年参与者的真实数据集
339 2024-08-05
Predicting meningioma grades and pathologic marker expression via deep learning
2024-May, European radiology IF:4.7Q1
研究论文 本研究建立了一个深度学习模型,用于预测脑膜瘤的肿瘤分级及病理标志物的表达 创新点在于使用深度学习方法高效预测脑膜瘤的分级和病理标志物的表达 外部验证队列的预测表现相对较低,可能限制了模型的广泛应用 研究旨在开发深度学习模型用于脑膜瘤的分级和病理标志物预测 1192名接受外科切除的脑膜瘤患者 数字病理学 脑膜瘤 深度学习 ResNet50 图像 1192
340 2024-08-05
Prognostication of lung adenocarcinomas using CT-based deep learning of morphological and histopathological features: a retrospective dual-institutional study
2024-May, European radiology IF:4.7Q1
研究论文 本文旨在开发和验证基于CT的深度学习模型,以预测肺腺癌的预后。 提出了一种新的基于CT的预后评分模型,利用形态学和组织病理学特征进行肺腺癌的生存预测,显示出潜在的应用价值。 虽然模型表现出较好的预测能力,但相较于离散时间生存模型的提升并无统计学意义。 研究旨在改善肺腺癌的预后评估。 研究对象为3181例已切除肺腺癌患者的术前胸部CT扫描。 计算机视觉 肺癌 深度学习(DL) NA 图像 3181例肺腺癌患者的术前CT扫描
回到顶部