深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202405-202405] [清除筛选条件]
当前共找到 905 篇文献,本页显示第 21 - 40 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
21 2025-02-17
Universal representation learning for multivariate time series using the instance-level and cluster-level supervised contrastive learning
2024-May, Data mining and knowledge discovery IF:2.8Q2
研究论文 本文提出了一种新的监督对比学习方法(SupCon-TSC),用于多变量时间序列分类任务,以提高分类性能并学习可解释的低维表示 提出了实例级和集群级的监督对比学习方法,以捕捉上下文信息并学习多变量时间序列数据集的判别性和通用表示 在小型数据集上的表现较好,但在更大规模数据集上的效果尚未验证 提高多变量时间序列分类任务的性能,特别是在标签数据有限的情况下 多变量时间序列数据 机器学习 NA 监督对比学习 SupCon-TSC 时间序列数据 两个小型心肺运动测试(CPET)数据集和UEA多变量时间序列档案
22 2025-02-16
Genetic and Clinical Correlates of AI-Based Brain Aging Patterns in Cognitively Unimpaired Individuals
2024-May-01, JAMA psychiatry IF:22.5Q1
研究论文 本研究利用深度学习和生成对抗网络,对45至85岁无认知障碍个体的脑部结构变化进行分组,并探讨这些分组与遗传、生物医学指标及认知衰退轨迹的关系 首次使用生成对抗网络进行半监督聚类分析,识别出无认知障碍个体中三种不同的脑老化模式,并揭示其与遗传、心血管风险因素及未来认知衰退的关联 研究依赖于特定数据集(iSTAGING国际联盟),可能限制了结果的普适性;此外,研究未涵盖所有可能的神经病理过程 探索无认知障碍个体中脑部结构变化的异质性,以揭示神经退行性疾病早期阶段的潜在机制 45至85岁无认知障碍的个体 数字病理 老年疾病 深度学习、生成对抗网络(GAN) GAN 脑部影像数据 27,402名无认知障碍个体
23 2025-02-13
Predicting dynamic, motion-related changes in B0 field in the brain at a 7T MRI using a subject-specific fine-trained U-net
2024-May, Magnetic resonance in medicine IF:3.0Q2
研究论文 本文提出了一种基于深度学习的方法,用于预测7T MRI中由于头部运动引起的B0场变化,以提高MR图像质量 使用3D U-net模型,结合特定受试者的有限头部位置数据进行微调,预测B0场变化,避免了传统导航器方法的局限性 需要结合外部跟踪硬件来实现实时校正,且依赖于特定受试者的数据进行微调 研究目的是预测7T MRI中由于头部运动引起的B0场变化,以提高MR图像质量 研究对象为7T MRI中的B0场变化 计算机视觉 NA 7T MRI 3D U-net 图像 NA
24 2025-02-12
Dynamic Projection of Medication Nonpersistence and Nonadherence Among Patients With Early Breast Cancer
2024-05-01, JAMA network open IF:10.5Q1
研究论文 本研究通过深度学习模型预测早期乳腺癌患者口服抗癌治疗的不持续和不依从情况 使用基于门控循环单元(GRU)架构的深度学习模型预测患者的不持续和不依从行为,并分析了不同特征对模型决策的贡献 研究依赖于法国健康保险数据库的匿名报销数据,可能无法完全反映其他地区或不同医疗体系下的情况 预测早期乳腺癌患者口服抗癌治疗的不持续和不依从情况,并分析相关影响因素 法国女性乳腺癌患者 机器学习 乳腺癌 深度学习 GRU(门控循环单元) 匿名报销数据 229,695名女性乳腺癌患者
25 2025-02-09
De novo designed proteins neutralize lethal snake venom toxins
2024-May-17, Research square
研究论文 本文利用深度学习方法设计蛋白质,以中和致命的蛇毒毒素 使用深度学习设计蛋白质,有效中和三指毒素(3FTx)家族的短链和长链α-神经毒素及细胞毒素,并展示了高热稳定性、高结合亲和力以及与计算模型的近原子级别一致性 实验筛选有限,需要进一步验证其广泛适用性和长期效果 开发新一代抗蛇毒疗法,以应对蛇咬伤这一被忽视的热带疾病 三指毒素(3FTx)家族的短链和长链α-神经毒素及细胞毒素 机器学习 蛇咬伤 深度学习 NA 蛋白质结构数据 小鼠模型
26 2025-02-07
The Neurobeachin-like 2 protein (NBEAL2) controls the homeostatic level of the ribosomal protein RPS6 in mast cells
2024-05, Immunology IF:4.9Q2
研究论文 本文研究了Neurobeachin-like 2蛋白(NBEAL2)在肥大细胞中控制核糖体蛋白RPS6稳态水平的功能 首次揭示了NBEAL2与RPS6的相互作用,并阐明了NBEAL2在肥大细胞中调控RPS6蛋白稳态的机制 研究主要基于小鼠模型和体外细胞系,尚未在人体中进行验证 探究NBEAL2在肥大细胞中的具体功能及其与RPS6的相互作用 小鼠肥大细胞及MC/9细胞系 分子生物学 NA CRISPR/Cas9、RoseTTAFold、Pymol、共免疫沉淀、Western blot、ELISA、流式细胞术 NA 蛋白质结构数据、分子相互作用数据 野生型和Nbeal2基因敲除小鼠的肥大细胞及MC/9细胞系
27 2025-02-05
A CONVEX COMPRESSIBILITY-INSPIRED UNSUPERVISED LOSS FUNCTION FOR PHYSICS-DRIVEN DEEP LEARNING RECONSTRUCTION
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 本文提出了一种基于凸压缩性启发的无监督损失函数,用于物理驱动的深度学习重建 提出了一种新的凸损失函数,用于评估输出图像的可压缩性,并在多种设置下评估重建质量 未提及具体局限性 改进快速MRI扫描的重建质量 MRI扫描图像 机器学习 NA 深度学习 PD-DL网络 图像 NA
28 2024-08-07
Correction to: Prediction of protein-ligand binding affinity via deep learning models
2024-May-23, Briefings in bioinformatics IF:6.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA
29 2025-02-02
Molecular Display of the Animal Meta-Venome for Discovery of Novel Therapeutic Peptides
2024-May-28, bioRxiv : the preprint server for biology
研究论文 本文开发了一种创新的计算方法,设计了一个高度多样化的动物毒液和“元毒液”库,用于发现新的治疗性肽 采用可编程的M13超噬菌体展示技术,保留关键的二硫键结构,并通过高通量DNA测序进行定量,从而实现了高度并行化的单轮生物淘选 NA 发现新的治疗性肽,特别是针对人类瘙痒受体MRGPRX4的Kunitz型结构域蛋白 动物毒液和“元毒液”库 生物信息学 NA M13超噬菌体展示技术,高通量DNA测序 深度学习 DNA序列 NA
30 2025-01-29
DeepIDA-GRU: a deep learning pipeline for integrative discriminant analysis of cross-sectional and longitudinal multiview data with applications to inflammatory bowel disease classification
2024-May-23, Briefings in bioinformatics IF:6.8Q1
研究论文 本文提出了一种名为DeepIDA-GRU的深度学习管道,用于整合横截面和纵向多视图数据的判别分析,并应用于炎症性肠病分类 该管道结合了统计和深度学习方法,能够整合来自多个来源的横截面和纵向数据,并识别出对视图间关联和类别分离有贡献的关键变量 现有方法通常要求所有视图的数据类型相同(仅横截面数据或仅纵向数据),或者在整合方法中不考虑任何类别结果 开发一种能够整合横截面和纵向多视图数据的深度学习管道,以更好地理解复杂疾病的病理生物学 炎症性肠病(IBD)研究中的横截面和纵向多组学数据(宏基因组学、转录组学和代谢组学) 机器学习 炎症性肠病 功能主成分分析和欧拉特征提取 密集前馈网络(用于横截面数据)和循环神经网络(用于纵向数据) 多组学数据 NA
31 2025-01-28
Exploring intricate connectivity patterns for cognitive functioning and neurological disorders: incorporating frequency-domain NC method into fMRI analysis
2024-05-02, Cerebral cortex (New York, N.Y. : 1991)
研究论文 本研究将频域新因果方法应用于功能磁共振成像分析,以探索认知功能和神经系统疾病的复杂连接模式 将频域新因果方法引入功能磁共振成像分析,构建了多种因果关联模型,并利用深度学习模型分析脑区拓扑变化特征 研究主要基于模拟信号和特定患者群体,可能无法完全反映真实世界的复杂性 探索认知功能和神经系统疾病的复杂连接模式 1,252组不同认知障碍程度的个体 神经影像分析 阿尔茨海默病 功能磁共振成像(fMRI) 深度学习模型 功能磁共振成像数据 1,252组个体
32 2025-01-25
ENHANCING TRANSCRANIAL FOCUSED ULTRASOUND TREATMENT PLANNING WITH SYNTHETIC CT FROM ULTRA-SHORT ECHO TIME (UTE) MRI: A MULTI-TASK DEEP LEARNING APPROACH
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 本研究利用多任务深度学习框架,从有限的超短回波时间(UTE)MRI数据集中生成合成CT(sCT)图像,用于经颅聚焦超声(tFUS)治疗规划 采用3D Transformer U-Net生成sCT图像,展示了UTE-MRI作为无辐射、成本效益高的tFUS规划替代方案的潜力 研究基于有限的数据集,可能需要更大规模的数据验证 提高经颅聚焦超声治疗规划的准确性和效率 超短回波时间(UTE)MRI数据 医学影像处理 NA 超短回波时间(UTE)MRI 3D Transformer U-Net MRI图像 有限的数据集
33 2025-01-24
UTILIZATION OF ARTIFICIAL INTELLIGENCE FOR PREDICTIVE MODELING IN DENTAL IMPLANTOLOGY
2024-May, Georgian medical news
PMID:39089263
研究论文 本文探讨了人工智能在牙科种植学中预测模型的应用,旨在识别影响种植体存活率的因素 利用人工智能模型分析患者数据(如X光片、病史)来预测种植体成功,并应用于检测潜在种植失败患者、改善种植设计等 由于缺乏具体结果和比较研究数量不足,无法进行定量分析 研究人工智能在牙科种植学中预测模型的应用 牙科种植体及其成功率的预测 机器学习 NA NA 决策树、随机森林、人工神经网络(ANN)、深度学习(DL) X光片、病史数据 NA
34 2025-01-24
ROBUST OUTER VOLUME SUBTRACTION WITH DEEP LEARNING GHOSTING DETECTION FOR HIGHLY-ACCELERATED REAL-TIME DYNAMIC MRI
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 本文提出了一种深度学习技术,用于改进从时间交错欠采样模式中估计静止外体积信号,从而提高实时动态MRI的图像质量 利用移动器官产生的伪周期性伪影特性,通过深度学习估计外体积信号,并在高加速率下实现图像质量的提升 未提及具体的数据集规模或实验验证的广泛性 提高实时动态MRI的时空分辨率,特别是在心脏成像中的应用 实时动态MRI数据,特别是心脏成像数据 计算机视觉 心血管疾病 深度学习 NA MRI图像 NA
35 2025-01-23
CYCLE-CONSISTENT SELF-SUPERVISED LEARNING FOR IMPROVED HIGHLY-ACCELERATED MRI RECONSTRUCTION
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 本文提出了一种基于循环一致性的自监督学习方法,用于改进高度加速的MRI重建 使用循环一致性(CC)来增强自监督学习,特别是在高加速率下减少混叠伪影 未明确提及具体局限性 改进高度加速的MRI重建技术 MRI图像 计算机视觉 NA 自监督学习 NA 图像 包括速率6和8的fastMRI膝关节成像以及20倍的HCP风格fMRI
36 2025-01-19
Automated deep learning segmentation of high-resolution 7 Tesla postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases
2024-May-01, Imaging neuroscience (Cambridge, Mass.)
研究论文 本文介绍了一种用于高分辨率7特斯拉死后MRI的自动深度学习分割方法,用于神经退行性疾病的结构-病理相关性定量分析 开发了一个深度学习管道,通过基准测试九种深度神经架构的性能来分割皮质层,并进行后处理拓扑校正 由于标记数据集的有限可用性以及扫描仪硬件和采集协议的异质性,自动分割方法在死后MRI中的应用尚未充分发展 开发自动分割方法以链接病理学测量与形态测量学测量 死后人类脑组织样本 数字病理学 阿尔茨海默病 7T MRI, T2w序列, T2*w FLASH序列 深度神经网络 MRI图像 135个死后人类脑组织样本,其中82个样本有阿尔茨海默病连续诊断
37 2025-01-19
NON-CARTESIAN SELF-SUPERVISED PHYSICS-DRIVEN DEEP LEARNING RECONSTRUCTION FOR HIGHLY-ACCELERATED MULTI-ECHO SPIRAL FMRI
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 本文提出了一种基于物理驱动的深度学习(PD-DL)重建方法,用于加速多回波螺旋fMRI的10倍重建 本文的创新点在于将自监督学习算法修改并应用于非笛卡尔轨迹的优化训练,以实现高时空分辨率的多回波螺旋fMRI重建 NA 研究目的是通过深度学习技术加速多回波螺旋fMRI的重建,以提高时空分辨率 多回波螺旋fMRI数据 医学影像处理 NA 深度学习 PD-DL网络 fMRI图像数据 NA
38 2025-01-15
A Novel Deep Learning Approach for Forecasting Myocardial Infarction Occurrences with Time Series Patient Data
2024-May-22, Journal of medical systems IF:3.5Q2
研究论文 本文提出了一种新颖的深度学习方法,用于预测心肌梗塞(MI)的发生,利用时间序列患者数据进行预测 提出了一种新颖的心肌序列分类(MSC)-LSTM方法,专门用于预测心肌梗塞的发生,并在性能上优于其他模型 研究仅限于Chittagong Metropolitan Area的数据,可能不具有普遍性 预测心肌梗塞的发生,以便早期预警和资源规划 Chittagong Metropolitan Area的心肌梗塞患者 机器学习 心血管疾病 时间序列分析 LSTM, MSC-LSTM 时间序列数据 2020年1月1日至2021年12月31日期间Chittagong Metropolitan Area的每日心肌梗塞发病率数据
39 2025-01-14
Deep learning model integrating radiologic and clinical data to predict mortality after ischemic stroke
2024-May-30, Heliyon IF:3.4Q1
研究论文 本文旨在创建并验证一个基于深度学习的模型,该模型整合了脑部扩散加权成像(DWI)、表观扩散系数(ADC)和临床因素,用于预测缺血性卒中后的死亡率 创新点在于首次将放射学信息(DWI和ADC)与临床因素结合,用于预测缺血性卒中患者的死亡率 研究主要依赖于单一医疗中心的数据,外部验证集仅来自一个二级心血管中心,可能存在数据偏差 开发并验证一个能够预测缺血性卒中患者死亡率的深度学习模型 缺血性卒中患者 医学影像分析 心血管疾病 深度学习 深度学习模型 图像(DWI和ADC)和临床数据 训练集1109例,验证集437例,内部测试集654例,外部测试集507例
40 2025-01-14
Noninvasive Molecular Subtyping of Pediatric Low-Grade Glioma with Self-Supervised Transfer Learning
2024-May, Radiology. Artificial intelligence
研究论文 本文开发并外部测试了一种基于MRI的深度学习管道,用于无创预测儿童低级别胶质瘤的突变状态 结合迁移学习和自监督交叉训练(TransferX)以及共识逻辑,提高了分类性能和泛化能力,特别是在数据有限的情况下 研究依赖于回顾性数据,可能存在选择偏差,且样本量相对较小 开发一种无创的、基于MRI的深度学习管道,用于儿童低级别胶质瘤的突变状态分类 儿童低级别胶质瘤患者 数字病理学 儿童低级别胶质瘤 MRI CNN 图像 开发数据集214例,外部测试数据集112例
回到顶部