深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202405-202405] [清除筛选条件]
当前共找到 916 篇文献,本页显示第 461 - 480 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
461 2024-08-05
SPIN: sex-specific and pathway-based interpretable neural network for sexual dimorphism analysis
2024-May-23, Briefings in bioinformatics IF:6.8Q1
研究论文 提出了一种统一的生物可解释深度学习框架SPIN,用于性别二态性分析。 SPIN框架显著提高了C-index,并能够识别之前分析中遗漏的性别特异性和共享的风险位点。 现有研究主要基于独立的性别分析和二合一的方法,可能未能充分揭示性别与基因之间的相互作用。 研究性别二态性在疾病中的影响和如何提升个体级别的风险预测。 TCGA癌症数据集和哮喘数据集中的男性和女性样本。 机器学习 NA 深度学习 NA 数据集 NA
462 2024-08-05
Histopathologic image-based deep learning classifier for predicting platinum-based treatment responses in high-grade serous ovarian cancer
2024-May-18, Nature communications IF:14.7Q1
研究论文 本研究开发了一种基于组织病理学图像的分类器,用于预测高级别浆液性卵巢癌对铂类化疗的反应。 开发了Pathologic Risk Classifier for HGSOC (PathoRiCH),其预测铂类治疗反应的性能优于现有的分子生物标志物。 缺乏对不同种族或年龄段患者的广泛适应性验证。 旨在提高对女性高级别浆液性卵巢癌的铂类化疗反应的预测能力。 对394个内科病例和两个独立外部队列(284个和136个)进行训练和验证的组织病理学图像。 数字病理学 卵巢癌 组织病理学图像分析 分类器 图像 总共614个样本:394个内科病例和两个独立外部队列(284个和136个)
463 2024-08-05
A multicenter proof-of-concept study on deep learning-based intraoperative discrimination of primary central nervous system lymphoma
2024-May-04, Nature communications IF:14.7Q1
研究论文 本文开发了一个基于深度学习的模型,用于在手术中区分原发性中枢神经系统淋巴瘤和其他病变 提出了一种人机融合的方法,将深度学习模型与病理诊断相结合,提高了诊断性能 外部队列的应用和特定病理类型可能影响模型的普适性 开发和验证一个能准确区分原发性中枢神经系统淋巴瘤的深度学习模型 重点研究了通过H&E染色的冷冻全切片图像区分原发性中枢神经系统淋巴瘤与其他病变 数字病理学 原发性中枢神经系统淋巴瘤 深度学习 LGNet 图像 使用了不同专家水平的病理学家的表现作为比较
464 2024-08-05
Feasibility and validity of using deep learning to reconstruct 12-lead ECG from three‑lead signals
2024 May-Jun, Journal of electrocardiology IF:1.3Q3
研究论文 本文介绍了一种基于深度学习的方法,将三导联ECG信号重构为12导联ECG信号。 该研究提出了一种复合ECG向量重构网络,结合了卷积神经网络和递归神经网络,用于从三导联信号恢复完整的12导联信息。 研究在不同患者条件下测试,可能存在个体差异的影响,尚未提到更多的样本或其他患者群体的验证。 探索通过深度学习重构12导联ECG的可行性和有效性。 使用导联I、II和V2信号进行ECG重构。 数字病理学 NA 卷积神经网络(CNN),双向长短期记忆网络(Bi-LSTM) CNN和Bi-LSTM组合模型 ECG信号 NA
465 2024-08-05
Spatiotemporal estimation of groundwater and surface water conditions by integrating deep learning and physics-based watershed models
2024-May-01, Water research X IF:7.2Q1
研究论文 本研究提出了一种深度学习模型框架,用于高空间分辨率地估计地下水和地表水条件 结合深度学习和基于物理的流域模型,提高了水文估计的效率和准确性 模型在长期预测的准确性方面仍需进一步改进 研究旨在通过深度学习提高水文模拟的效率 研究对象为韩国Sabgyo溪流域的地下水位和地表水深度 数字水文学 NA 深度学习 卷积神经网络(CNN) 气象数据 使用来自完全分布式水文模型HydroGeoSphere的数据和实际现场测量数据
466 2024-08-05
Advancements in Artificial Intelligence for the Diagnosis of Multidrug Resistance and Extensively Drug-Resistant Tuberculosis: A Comprehensive Review
2024-May, Cureus
综述 本文全面回顾了人工智能在多药耐药结核病和广泛耐药结核病诊断中的最新进展 探讨了在结核病诊断中应用的各种人工智能算法及其比较性能 讨论了在结核病诊断中实施人工智能面临的数据可用性、算法可解释性和监管考虑等挑战和限制 研究人工智能在多药耐药结核病和广泛耐药结核病诊断中的应用 聚焦于多药耐药结核病和广泛耐药结核病的诊断技术 自然语言处理 结核病 人工智能 机器学习,深度学习,集成技术 NA NA
467 2024-08-05
A computed tomography-based multitask deep learning model for predicting tumour stroma ratio and treatment outcomes in patients with colorectal cancer: a multicentre cohort study
2024-May-01, International journal of surgery (London, England)
研究论文 本研究开发了一种多任务深度学习模型,以非侵入性地预测结直肠癌患者的肿瘤基质比率(TSR)和预后。 该文章创新性地使用了多任务深度学习模型结合术前CT图像,解决了当前TSR组织学评估的局限性。 该研究为回顾性研究,未来需要前瞻性研究来验证模型的有效性。 研究目的是开发一种模型来预测结直肠癌患者的TSR和预后。 本文研究对象包括2268名经切除的结直肠癌患者。 数字病理学 结直肠癌 CT成像 MDL模型 影像 2268名切除的结直肠癌患者
468 2024-08-05
Deep learning-based multi-model prediction for disease-free survival status of patients with clear cell renal cell carcinoma after surgery: a multicenter cohort study
2024-May-01, International journal of surgery (London, England)
研究论文 本研究提出了一种深度学习基础的多模型预测方法,以评估透明细胞肾细胞癌患者术后的无病生存状态 开发了一种新的多模型预测签名,将多模态信息整合到一个单一的预测模型中,以提高无病生存的预后预测性能 需要在多个中心和地区进行进一步验证以证实效果 提高透明细胞肾细胞癌患者术后无病生存的预后预测 414名透明细胞肾细胞癌患者的影像学和临床数据 机器学习 肾癌 深度学习、机器学习 多模态预测模型 图像、临床数据 414名患者
469 2024-08-05
Artificial intelligence-based classification of breast lesion from contrast enhanced mammography: a multicenter study
2024-May-01, International journal of surgery (London, England)
研究论文 本文建立了一种基于人工智能的乳腺病变预诊断方法,旨在通过对比增强乳腺摄影进行评估 该研究采用RefineNet作为基础网络,并结合卷积块注意力模块(CBAM)进行特征的自适应精细化,展示了创新的AI应用于乳腺病变的分类 研究的限制在于为回顾性研究,样本来自于特定的多中心设置,可能会影响普适性 研究目的在于利用人工智能技术提升乳腺病变的预诊断准确性 研究对象为在2017至2022年之间接受对比增强乳腺摄影检查的1430名患者 计算机视觉 乳腺癌 RNA-seq XGBoost,RefineNet 医学图像,基因组数据 1430名患者的对比增强乳腺摄影检查数据,以及12名患者的RNA测序数据
470 2024-08-05
Precise tooth design using deep learning-based templates
2024-05, Journal of dentistry IF:4.8Q1
研究论文 本研究结合隐式模板和深度学习,构建了一种精确的神经网络用于个性化牙齿缺损修复 提出了一种新颖的深度学习模型ToothDIT,用于生成高度定制的修复模板 样本量较小,仅使用了90个右侧上颌中切牙模型 旨在提高假牙设计中的精准度和效率 研究对象为右侧上颌中切牙的缺损修复 数字病理学 NA 深度学习 ToothDIT 三维模型 90个右上颌中切牙模型(80个用于训练,10个用于验证)
471 2024-08-05
Application of artificial intelligence in dental implant prognosis: A scoping review
2024-05, Journal of dentistry IF:4.8Q1
研究论文 这项范围评估的目的是评估人工智能在牙科植入物预后中的表现 探讨了人工智能在牙科植入物预后预测中的应用和性能 研究需要更多的放射影像和临床数据以提高人工智能的性能 评估人工智能在牙科植入物预后中的有效性 分析了892项研究,最终纳入了12项符合标准的研究 NA NA 深度学习和传统机器学习算法 深度学习模型和传统机器学习算法 医疗记录和放射影像 892项研究中进行了36项的全文分析
472 2024-08-05
Assessing the Potential of a Deep Learning Tool to Improve Fracture Detection by Radiologists and Emergency Physicians on Extremity Radiographs
2024-05, Academic radiology IF:3.8Q1
研究论文 评估了一种基于深度学习的骨折检测工具在四肢放射学中的独立性能及其对放射科医生和急诊医生的帮助 该文章展示了一种新开发的深度学习工具在骨折检测中的高独立准确性,并显著提高了医生的诊断准确性和减少了解读时间 本研究局限于单一机构的数据,未涉及多种医院或不同地区的样本 研究目的在于提高放射科医生和急诊医生在四肢放射学中识别骨折的能力 主要研究对象为放射科医生和急诊医生在检测骨折时的表现 计算机视觉 NA 深度学习 NA 放射影像 132,000张四肢骨骼放射学影像用于模型开发,2626张无身份信息的放射影像用于评估
473 2024-08-05
Exploring the Impact of Batch Size on Deep Learning Artificial Intelligence Models for Malaria Detection
2024-May, Cureus
研究论文 本研究探索了批量大小对用于疟疾检测的深度学习人工智能模型的影响 提出了较小的批量大小可能提高模型准确性,为疟疾筛查的AI模型开发提供了新见解 研究主要依赖于特定数据集的结果,缺乏多样化样本的评估 探讨批量大小对CNN模型在疟疾检测中的准确性影响 使用NIH-NLM-ThinBloodSmearsPf数据集中的疟疾血涂片图像进行研究 计算机视觉 疟疾 CNN CNN 图像 27,558张血涂片图像(13,779张感染和13,779张未感染单细胞图像)
474 2024-08-05
A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study
2024-May-01, International journal of surgery (London, England)
研究论文 本研究开发并验证了一种基于术前CT的深度学习模型,以预测肌肉浸润性膀胱癌患者在根治性膀胱切除术后的整体生存率 该研究首次提出利用术前CT影像结合深度学习算法来预测肌肉浸润性膀胱癌患者的生存结果,并与传统模型进行了比较 该研究为回顾性研究,可能存在选择偏倚,且依赖于单一的影像类型 本研究旨在开发和验证一种深度学习模型,以预测肌肉浸润性膀胱癌患者的整体生存率 本研究的对象为接受根治性膀胱切除术的肌肉浸润性膀胱癌患者 计算机视觉 膀胱癌 CT 深度学习模型 影像 405名患者
475 2024-08-05
Towards clinically applicable automated mandibular canal segmentation on CBCT
2024-05, Journal of dentistry IF:4.8Q1
研究论文 开发了一种基于深度学习的系统,用于在锥形束计算机断层扫描(CBCT)图像上进行下颌管的精确、稳健、全自动分割 提出了一种三步策略结合2D U-Net和3D U-Net进行下颌管分割,具有多阶段注释方法 在研究中数据集来自单一中心,外部验证数据集相对较小 研究旨在提高下颌管在CBCT图像上的自动分割精度 536个CBCT扫描的图像数据 数字病理学 NA 深度学习 2D U-Net和3D U-Net 图像 536个CBCT扫描(训练集:376,验证集:80,测试集:80)
476 2024-08-05
Big data research in nursing: A bibliometric exploration of themes and publications
2024-05, Journal of nursing scholarship : an official publication of Sigma Theta Tau International Honor Society of Nursing IF:2.4Q1
研究论文 本研究旨在理解全球护理领域大数据研究的热点和趋势 通过文献计量分析,揭示了护理领域大数据研究的多个焦点集群和技术融合的演变 全球护理研究中大数据的利用存在不平衡,需提升临床人员的数据科学素养 探讨大数据在护理研究中的主题趋势和演变 护理领域的文献和研究作者 数字病理学 老年病 文献计量分析 NA 文献 全球45位核心作者和17本核心期刊的研究
477 2024-08-05
Novel Deep Learning Denoising Enhances Image Quality and Lowers Radiation Exposure in Interventional Bronchial Artery Embolization Cone Beam CT
2024-05, Academic radiology IF:3.8Q1
研究论文 本研究探讨了一种先进的深度学习去噪技术在介入支气管动脉栓塞的锥束CT成像中减少辐射剂量和提高图像质量的效果 引入了一种新的深度学习去噪软件,有效改善了图像质量并降低了辐射暴露 主观评估未能显著区分6秒和3秒的DLD质量 评估在介入支气管动脉栓塞过程中提高图像质量和降低辐射剂量的技术 BMI 匹配的患者,这些患者接受了不同时间长度的BAE CBCT扫描 医学影像学 NA 深度学习去噪(DLD) NA 图像 60名患者
478 2024-08-07
Corrigendum to: Development of a deep learning model for predicting critical events in a pediatric intensive care unit
2024-May, Acute and critical care IF:1.7Q3
NA NA NA NA NA NA NA NA NA NA NA NA
479 2024-08-05
Predicting the Progression of Chronic Kidney Disease: A Systematic Review of Artificial Intelligence and Machine Learning Approaches
2024-May, Cureus
综述 本系统综述全面评估了人工智能和机器学习技术在预测慢性肾病进展中的应用 本文创新性地整合了多种AI/ML算法,强调了这些模型在CKD进展预测中的潜力和优势 存在数据质量、偏见和伦理考虑等挑战 旨在通过AI/ML技术预测慢性肾病的进展 涉及慢性肾病的进展预测研究 机器学习 慢性肾病 人工智能,机器学习 逻辑回归,支持向量机,随机森林,神经网络,深度学习 纵向数据,临床数据 涉及13项相关研究
480 2024-08-05
Leveraging conformal prediction to annotate enzyme function space with limited false positives
2024-May, PLoS computational biology IF:3.8Q1
研究论文 本文提出了一种机器学习框架CPEC,用于控制生物发现中的假阳性率 CPEC结合了深度学习模型与符合预测方法,以实现假发现率的控制 本研究未提及模型在特定生物体上的应用限制 研究旨在优化生物发现过程中的预测准确性和假发现率控制 研究对象为功能较少表征的酶 机器学习 NA 深度学习与符合预测 NA NA NA
回到顶部