本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101 | 2025-04-24 |
MMSyn: A New Multimodal Deep Learning Framework for Enhanced Prediction of Synergistic Drug Combinations
2024-05-13, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00165
PMID:38676916
|
研究论文 | 提出了一种名为MMSyn的多模态深度学习框架,用于预测协同药物组合 | 结合药物分子特征和癌细胞系数据,使用注意力机制和交互模块进行特征整合,提出新的多模态深度学习框架 | 未提及具体样本量大小和模型在真实临床应用中的表现 | 开发一种预测协同药物组合的计算方法 | 药物组合和癌细胞系 | 机器学习 | 癌症 | 深度学习 | 多层感知机(MLP)结合注意力机制 | 分子结构数据、基因表达数据、DNA拷贝数、通路活性数据 | NA |
102 | 2025-04-23 |
Statistical and Machine Learning Analysis in Brain-Imaging Genetics: A Review of Methods
2024-05, Behavior genetics
IF:2.6Q2
DOI:10.1007/s10519-024-10177-y
PMID:38336922
|
综述 | 本文综述了脑成像遗传学分析领域的方法进展,从早期的大规模单变量分析到当前的深度学习方法 | 概述了脑成像遗传学分析方法的演变,并比较了各种方法的优缺点 | 未提及具体实验验证或数据集的局限性 | 探讨脑成像遗传学分析方法的发展及其在理解复杂脑相关疾病中的应用 | 脑成像数据和遗传数据的整合分析 | 机器学习和医学影像分析 | 脑相关疾病 | 脑成像技术和遗传数据分析 | 从大规模单变量分析到深度学习 | 脑成像数据和遗传数据 | NA |
103 | 2025-04-22 |
Pixelated High-Q Metasurfaces for in Situ Biospectroscopy and Artificial Intelligence-Enabled Classification of Lipid Membrane Photoswitching Dynamics
2024-05-07, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.3c09798
PMID:38653474
|
research paper | 该研究结合像素化全介质超表面与深度学习技术,开发了一种用于时间分辨原位生物光谱学的集成光流控平台 | 利用高Q超表面在损耗性水环境中操作,结合深度学习实现实时分类,准确率达98% | 目前仅应用于光开关脂质膜的动态行为研究,尚未扩展到更广泛的生物分子系统 | 开发一种集成光流控平台,用于研究生物系统的动态相互作用 | 光开关脂质膜的动态行为 | digital pathology | NA | 光谱采样技术 | CNN | 光谱数据 | NA |
104 | 2025-04-20 |
Vulnerability of Thalamic Nuclei at CSF Interface During the Entire Course of Multiple Sclerosis
2024-May, Neurology(R) neuroimmunology & neuroinflammation
DOI:10.1212/NXI.0000000000200222
PMID:38635941
|
研究论文 | 本研究探讨了多发性硬化症(MS)整个病程中丘脑核团在脑脊液界面的脆弱性 | 通过深度学习合成序列和自动多图谱分割策略,揭示了丘脑核团在不同MS阶段的动态变化及其与临床残疾的关联 | 研究依赖于常规3D-T1 MRI数据,可能无法捕捉更细微的病理变化 | 探究多发性硬化症病程中丘脑核团的动态变化及其机制 | 1,123名MS患者和相同数量的健康对照者 | 数字病理学 | 多发性硬化症 | 3D-T1 MRI,深度学习,自动多图谱分割 | 深度学习 | MRI图像 | 2,246名参与者(1,123名MS患者和1,123名健康对照) |
105 | 2025-04-17 |
Medical forecasting
2024-05-24, Science (New York, N.Y.)
DOI:10.1126/science.adp7977
PMID:38781357
|
研究论文 | 本文讨论了AI在天气预报中的应用及其在医学预测中的潜力 | 提出将天气预报中的深度学习模型GraphCast应用于医学预测,以提高预测准确性和速度 | 目前医学预测领域缺乏黄金标准,预测健康结果的方法尚不成熟 | 探索AI在医学预测中的应用,以预防疾病或严重急性事件 | 个体健康风险预测 | 机器学习 | NA | 深度学习 | GraphCast | NA | NA |
106 | 2025-04-17 |
Whole-body magnetic resonance imaging at 0.05 Tesla
2024-05-10, Science (New York, N.Y.)
DOI:10.1126/science.adm7168
PMID:38723062
|
research paper | 开发了一种使用0.05特斯拉永磁体和深度学习的全身MRI扫描仪,无需射频和磁屏蔽 | 利用深度学习和0.05特斯拉永磁体开发了一种低成本、无需屏蔽的全身MRI扫描仪,并采用三维深度学习重建提升图像质量 | 未提及具体样本量和临床验证结果 | 开发低成本、易普及的全身MRI扫描技术 | 全身MRI扫描仪 | 医学影像 | NA | MRI, 深度学习 | 深度学习 | MRI图像 | NA |
107 | 2025-04-16 |
Deep learning based digital pathology for predicting treatment response to first-line PD-1 blockade in advanced gastric cancer
2024-05-08, Journal of translational medicine
IF:6.1Q1
DOI:10.1186/s12967-024-05262-z
PMID:38720336
|
研究论文 | 本研究利用深度学习分析病理图像,旨在预测晚期胃癌患者对一线PD-1联合化疗的治疗反应 | 开发了基于深度学习的免疫检查点抑制剂反应评分(ICIsRS),作为一种新型组织病理学生物标志物,用于预测治疗反应 | 研究为多中心回顾性分析,可能需要前瞻性研究进一步验证 | 预测晚期胃癌患者对一线PD-1联合化疗的治疗反应,以实现精准患者选择 | 晚期胃癌患者 | 数字病理学 | 胃癌 | 深度学习 | 集成模型(ICIsNet) | 图像(H&E染色切片) | 264名晚期胃癌患者的313张全切片图像(WSIs),共148,181个图像块 |
108 | 2025-04-16 |
Deep learning imaging phenotype can classify metabolic syndrome and is predictive of cardiometabolic disorders
2024-05-08, Journal of translational medicine
IF:6.1Q1
DOI:10.1186/s12967-024-05163-1
PMID:38720370
|
研究论文 | 本研究利用深度学习从腹部CT扫描中提取图像衍生表型(IDP),用于分类代谢综合征并预测未来心血管代谢疾病的发生 | 提出了一种基于深度学习的图像衍生表型(IDP),在代谢综合征分类和心血管代谢疾病预测方面优于传统的放射组学特征和临床定义 | 研究样本量有限,且仅基于腹部CT扫描,未考虑其他可能的影像学或临床数据 | 开发一种基于深度学习的图像衍生表型(IDP),用于早期检测和干预代谢异常,以降低心血管代谢疾病的风险 | 2000多名个体的腹部CT扫描数据,其中1300多名用于预测未来高血压、II型糖尿病和脂肪肝疾病的发生 | 数字病理学 | 心血管疾病 | 深度学习 | 深度学习模型(未具体说明) | 图像(腹部CT扫描) | 2000多名个体(其中1300多名用于疾病预测) |
109 | 2025-04-14 |
Enhancing the Diagnostic Utility of ASL Imaging in Temporal Lobe Epilepsy through FlowGAN: An ASL to PET Image Translation Framework
2024-May-30, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.05.28.24308027
PMID:38853910
|
研究论文 | 本研究开发了一个名为FlowGAN的深度学习框架,用于从ASL和结构MRI输入合成类似FDG-PET的图像,以提高ASL在颞叶癫痫诊断中的性能 | 提出FlowGAN框架,通过生成对抗网络从ASL和MRI合成FDG-PET样图像,显著提升了ASL在癫痫诊断中的性能 | 样本量相对较小(68例患者),且仅针对颞叶癫痫患者进行研究 | 提高动脉自旋标记(ASL)成像在颞叶癫痫诊断中的性能 | 68例癫痫患者(其中36例为明确侧化的颞叶癫痫) | 数字病理 | 颞叶癫痫 | ASL成像、FDG-PET成像、MRI | GAN | 医学影像 | 68例癫痫患者(36例明确侧化的颞叶癫痫) |
110 | 2025-04-13 |
Multiscale Computational and Artificial Intelligence Models of Linear and Nonlinear Composites: A Review
2024-May, Small science
IF:11.1Q1
DOI:10.1002/smsc.202300185
PMID:40213577
|
综述 | 本文综述了多尺度建模方法在硬质和软质复合材料中的应用,包括分子动力学模拟、有限元分析和机器学习/深度学习替代模型 | 综述了最新的多尺度建模方法,包括无网格方法、混合机器学习和有限元模型,以及非线性本构材料模型 | 计算资源可用性、模型保真度和可重复性方面的限制 | 为读者提供复合材料多尺度建模研究和开发的未来趋势的清晰展望 | 硬质(聚合物、金属、纱线、纤维、纤维增强聚合物和聚合物基复合材料)和软质(如脑白质[BWM]等生物组织)复合材料 | 机器学习 | NA | 分子动力学模拟、有限元分析、机器学习/深度学习 | 分子动力学、有限元、机器学习/深度学习替代模型 | 数值模拟和大量实验结果 | NA |
111 | 2025-04-12 |
Conversion of single-energy CT to parametric maps of dual-energy CT using convolutional neural network
2024-May-29, The British journal of radiology
DOI:10.1093/bjr/tqae076
PMID:38597871
|
研究论文 | 提出一种基于卷积神经网络的多任务学习框架,用于将单能CT图像直接转换为双能CT的三种参数图 | 开发了VMI-Net、EAN-Net和RED-Net三个网络,实现了单能CT到双能CT参数图的直接转换,无需双能CT设备 | 研究样本量较小(67例患者),且仅使用了特定型号的双能CT设备数据 | 探索通过深度学习实现单能CT到双能CT参数图转换的方法 | 单能CT图像 | 医学影像分析 | NA | 深度学习 | CNN | 医学影像 | 67例患者(2019-2020年间收集) |
112 | 2025-04-12 |
Machine learning and deep learning to identifying subarachnoid haemorrhage macrophage-associated biomarkers by bulk and single-cell sequencing
2024-05, Journal of cellular and molecular medicine
IF:4.3Q2
DOI:10.1111/jcmm.18296
PMID:38702954
|
研究论文 | 本研究通过单细胞转录组测序和批量RNA-seq技术,识别了蛛网膜下腔出血(SAH)中巨噬细胞亚群及其相关关键基因,并构建了诊断模型和潜在治疗靶点 | 首次在SAH中识别出独特的巨噬细胞亚群,并利用hdWGCNA方法发现160个关键基因,构建了高性能诊断模型,同时通过分子对接识别潜在治疗药物 | 需要进一步的实验和临床研究来验证这些发现并探索靶点在SAH治疗中的临床意义 | 改善蛛网膜下腔出血的诊断和治疗策略 | SAH大鼠模型中的巨噬细胞亚群及其相关基因 | 数字病理学 | 蛛网膜下腔出血 | 单细胞转录组测序, 批量RNA-seq, 分子对接 | 卷积神经网络(CNN), lasso回归 | RNA测序数据 | SAH大鼠模型脑组织样本 |
113 | 2025-04-12 |
PBAC: A pathway-based attention convolution neural network for predicting clinical drug treatment responses
2024-05, Journal of cellular and molecular medicine
IF:4.3Q2
DOI:10.1111/jcmm.18298
PMID:38683133
|
research paper | 提出了一种基于通路注意力的卷积神经网络PBAC,用于预测临床药物治疗反应 | PBAC整合了深度学习框架和注意力机制,专注于重要通路,提高了药物反应预测性能,并提供了药物作用机制的解释 | NA | 开发一种基于生物学通路信息的药物反应预测工具 | 四种化疗药物(Bortezomib、Cisplatin、Docetaxel和Paclitaxel)和11个免疫治疗数据集 | machine learning | cancer | deep learning | CNN with attention mechanism | biological pathway information | 11 immunotherapy datasets |
114 | 2025-04-12 |
MFNet: Meta-learning based on frequency-space mix for MRI segmentation in nasopharyngeal carcinoma
2024-05, Journal of cellular and molecular medicine
IF:4.3Q2
DOI:10.1111/jcmm.18355
PMID:38685683
|
research paper | 提出了一种基于频率空间混合的元学习方法MFNet,用于鼻咽癌MRI分割,以提高模型在不同中心的泛化能力 | 通过将MRI模态从空间域转换到频率域,并采用混合特征的元学习方法,显著提升了模型在未见领域的泛化性能 | 需要手动标注的MRI数据,且样本量相对有限(321例患者) | 解决鼻咽癌MRI分割模型在不同医疗中心部署时的泛化问题 | 鼻咽癌患者的MRI图像 | digital pathology | nasopharyngeal carcinoma | Fourier transform, meta-learning | MFNet | MRI图像(T1WI、T2WI、CE-T1WI) | 321例患者来自两家医院 |
115 | 2025-04-12 |
A Multi-Element Identification System Based on Deep Learning for the Visual Field of Percutaneous Endoscopic Spine Surgery
2024-May, Indian journal of orthopaedics
IF:1.1Q3
DOI:10.1007/s43465-024-01134-2
PMID:38694692
|
研究论文 | 开发了一种基于深度学习的多元素识别系统,用于经皮内窥镜脊柱手术视野中的解剖组织和手术器械识别 | 首次将深度学习技术应用于经皮内窥镜脊柱手术视野的多元素识别,并评估了不同卷积神经网络模型的性能 | 样本量较小(仅48名患者),且未在实际手术环境中验证系统性能 | 开发适用于经皮内窥镜脊柱手术的多元素识别系统,并评估其可行性 | 腰椎间盘突出症患者的经皮内窥镜脊柱手术视野图像 | 计算机视觉 | 腰椎间盘突出症 | 深度学习 | CNN(包括Solov2、CondInst、Mask R-CNN和Yolact) | 图像 | 48名患者的6000张手术视野图像 |
116 | 2025-04-06 |
Machine Learning Prediction of Lymph Node Metastasis in Breast Cancer: Performance of a Multi-institutional MRI-based 4D Convolutional Neural Network
2024-05, Radiology. Imaging cancer
DOI:10.1148/rycan.230107
PMID:38607282
|
research paper | 开发了一种基于多机构MRI数据的4D卷积神经网络模型,用于无创预测乳腺癌淋巴结转移 | 提出了一种结合动态图像时间信息的4D CNN模型,整合临床病理指标以提高预测性能 | 研究为回顾性设计,样本量相对有限(350例患者) | 开发深度学习模型预测乳腺癌淋巴结转移状态 | 新诊断的原发性浸润性乳腺癌患者 | digital pathology | breast cancer | dynamic contrast-enhanced (DCE) breast MRI | 4D CNN | MRI图像 | 350例女性患者(平均年龄51.7±11.9岁) |
117 | 2025-04-01 |
VesselBoost: A Python Toolbox for Small Blood Vessel Segmentation in Human Magnetic Resonance Angiography Data
2024-May-22, bioRxiv : the preprint server for biology
DOI:10.1101/2024.05.22.595251
PMID:38826408
|
research paper | 介绍了一个名为VesselBoost的Python工具箱,用于在人类磁共振血管造影数据中进行小血管分割 | 结合深度学习和不完美训练标签进行血管分割,并利用创新的数据增强技术 | 需要大量正确和全面标记的数据集,这在实践中可能难以获得 | 通过高分辨率MRA数据进行小血管的定量表征和精确表示,以支持血流模拟 | 人类大脑的小血管 | digital pathology | cardiovascular disease | MRA, deep learning | deep learning-based methods | image | NA |
118 | 2025-03-30 |
Artificial intelligence-based assessment of built environment from Google Street View and coronary artery disease prevalence
2024-May-07, European heart journal
IF:37.6Q1
DOI:10.1093/eurheartj/ehae158
PMID:38544295
|
研究论文 | 本研究利用Google街景图像和深度学习技术评估建筑环境与冠状动脉疾病患病率之间的关联 | 首次将深度学习应用于Google街景图像分析,建立建筑环境特征与心血管疾病患病率的关联模型 | 横断面研究设计无法确定因果关系,研究仅限于美国七个城市 | 探索基于机器视觉的建筑环境评估与心血管疾病患病率之间的关系 | 美国七个城市的789个人口普查区的建筑环境特征 | 计算机视觉 | 心血管疾病 | 深度学习 | CNN, 线性混合效应模型 | 图像 | 53万张Google街景图像,覆盖7个美国城市的789个人口普查区 |
119 | 2025-03-29 |
Enhancing Global Estimation of Fine Particulate Matter Concentrations by Including Geophysical a Priori Information in Deep Learning
2024-May-10, ACS ES&T air
DOI:10.1021/acsestair.3c00054
PMID:38751607
|
research paper | 该研究通过结合地球物理先验信息和深度学习技术,改进了全球细颗粒物(PM)浓度的估计 | 开发了一种包含地球物理估计的损失函数,并引入了新颖的空间交叉验证方法,以解决监测站稀少区域的估计问题 | 在远离监测站的区域,模型性能仍然会受到一定影响 | 改进全球细颗粒物(PM)浓度的估计精度 | 全球细颗粒物(PM)浓度分布 | machine learning | NA | 深度学习 | CNN | 卫星数据、模拟数据和监测数据 | 1998-2019年间的月度数据 |
120 | 2025-03-20 |
Generalizing Parkinson's disease detection using keystroke dynamics: a self-supervised approach
2024-May-20, Journal of the American Medical Informatics Association : JAMIA
IF:4.7Q1
DOI:10.1093/jamia/ocae050
PMID:38497957
|
研究论文 | 本研究提出了一种自监督学习方法,通过减少对标签的依赖来提高帕金森病检测的泛化能力 | 结合Barlow Twins损失和差异损失的自监督损失函数,用于从未标记数据中学习更稳健的特征表示 | 缺乏标准化的数据采集协议和注释数据集的有限可用性 | 验证自监督学习方法在减少标签依赖和提高帕金森病检测泛化能力方面的有效性 | 帕金森病患者和对照组 | 机器学习 | 帕金森病 | 自监督学习 | 自监督学习模型 | 击键动态信号 | 2个独立数据集中的对照组和帕金森病患者 |