本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21 | 2025-07-04 |
Spatial Deconvolution of Cell Types and Cell States at Scale Utilizing TACIT
2024-Jun-27, Research square
DOI:10.21203/rs.3.rs-4536158/v1
PMID:38978567
|
研究论文 | 开发了一种名为TACIT的无监督算法,用于细胞注释,无需训练数据,提高了空间生物学中细胞类型和状态识别的准确性和可扩展性 | TACIT算法通过无偏阈值区分阳性细胞与背景,专注于相关标记物识别多组学检测中的模糊细胞,无需训练数据 | 算法在泛化性方面可能存在挑战,因为细胞、邻域和生态位在健康和疾病中的变异性 | 提高空间生物学中细胞类型和状态识别的准确性和可扩展性 | 细胞类型和状态 | 空间生物学 | 炎症性腺体疾病 | 多组学检测 | 无监督算法 | 空间转录组学和蛋白质组学数据 | 5个数据集(5,000,000个细胞;51种细胞类型) |
22 | 2025-07-04 |
Spatial Deconvolution of Cell Types and Cell States at Scale Utilizing TACIT
2024-Jun-03, bioRxiv : the preprint server for biology
DOI:10.1101/2024.05.31.596861
PMID:38895230
|
研究论文 | 本文介绍了一种名为TACIT的无监督算法,用于细胞注释,无需训练数据即可识别细胞类型和状态 | TACIT算法通过无偏阈值区分阳性细胞与背景,专注于相关标记以识别多组学检测中的模糊细胞,提高了准确性和可扩展性 | NA | 解决空间生物学中细胞类型和状态识别的耗时和易出错问题 | 细胞类型和状态 | 空间生物学 | 炎症性腺体疾病 | 多组学检测 | 无监督算法 | 空间转录组学和蛋白质组学数据 | 五个数据集(5,000,000个细胞;51种细胞类型)来自三个生态位(脑、肠、腺体) |
23 | 2025-07-03 |
Using machine learning or deep learning models in a hospital setting to detect inappropriate prescriptions: a systematic review
2024-Jun-21, European journal of hospital pharmacy : science and practice
IF:1.6Q3
DOI:10.1136/ejhpharm-2023-003857
PMID:38050067
|
系统综述 | 本文通过系统综述探讨了机器学习和深度学习模型在医院环境中检测不当处方的应用现状 | 总结了AI在临床药学领域的应用现状,并指出了整合AI到临床医院药学实践中的潜在价值 | 纳入的研究中有12项被认为存在高偏倚风险,且训练数据集非常异质 | 探讨机器学习和深度学习模型在检测医院不当药物医嘱中的应用 | 医院临床药师使用的AI模型 | 机器学习 | NA | 监督学习技术 | 机器学习和深度学习模型 | 药物医嘱数据 | 分析的处方医嘱数量从31到5,804,192不等 |
24 | 2025-07-01 |
Retrieving and reconstructing conceptually similar images from fMRI with latent diffusion models and a neuro-inspired brain decoding model
2024-06-28, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/ad593c
PMID:38885689
|
研究论文 | 本研究提出了一种基于语义和上下文相似性的脑解码新方法,利用fMRI数据和深度学习解码流程来推断和重建概念相似的图像 | 结合了神经科学启发的大脑解码模型和潜在扩散模型,通过线性映射fMRI活动到语义视觉特征空间,实现了语义分类和图像检索/生成 | 方法依赖于预训练神经网络的潜在空间表示,可能受限于网络本身的表征能力 | 开发一种新的脑解码方法,能够从fMRI数据中重建概念相似的图像 | 人类大脑对自然图像刺激的神经活动模式 | 计算神经科学 | NA | fMRI, 潜在扩散模型 | 线性脑到特征模型, 潜在扩散模型 | fMRI数据, 图像数据 | 三个fMRI数据集(Generic Object Decoding, BOLD5000, NSD) |
25 | 2025-06-24 |
Longitudinal risk prediction for pediatric glioma with temporal deep learning
2024-Jun-28, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.06.04.24308434
PMID:38978642
|
研究论文 | 该研究提出了一种自监督的深度学习方法来分析纵向医学影像,预测儿童胶质瘤的复发风险 | 提出了一种名为时间学习的深度学习框架,能够利用患者当前和既往的脑部MR影像中的时空信息来预测未来复发 | 研究仅基于715名患者的3,994次扫描,样本量相对有限,且仅在儿童胶质瘤中进行了验证 | 提高儿童胶质瘤复发的个体化预测准确性 | 儿童胶质瘤患者 | 数字病理 | 儿童胶质瘤 | 深度学习 | 时间学习(Temporal Learning) | 医学影像(MRI) | 715名患者的3,994次扫描 |
26 | 2025-06-18 |
Providing context: Extracting non-linear and dynamic temporal motifs from brain activity
2024-Jun-27, bioRxiv : the preprint server for biology
DOI:10.1101/2024.06.27.600937
PMID:38979316
|
研究论文 | 本研究提出了一种使用非线性深度学习模型(DSVAE)从静息态功能磁共振成像(rs-fMRI)中提取非线性动态时间模式的新方法 | 使用解耦变分自编码器(DSVAE)分离窗口特定(上下文)信息和时间步特定(局部)信息,以捕捉多时间尺度的差异 | NA | 分析rs-fMRI动态特性,探索精神分裂症患者与对照组在脑活动模式上的差异 | 精神分裂症患者和对照组受试者的rs-fMRI数据 | 神经影像分析 | 精神分裂症 | rs-fMRI | DSVAE(解耦变分自编码器) | 功能磁共振成像数据 | NA |
27 | 2025-06-18 |
Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification
2024-Jun-23, ArXiv
PMID:39398214
|
research paper | 评估一种自动化深度学习方法在检测腹水并量化其体积方面的性能,研究对象为肝硬化和卵巢癌患者 | 提出了一种基于深度学习的自动分割和量化腹水体积的方法,并在多机构数据集上验证了其性能 | 研究为回顾性研究,可能受到数据选择和标注偏差的影响 | 开发并验证一种自动量化腹水体积的深度学习方法 | 肝硬化及卵巢癌患者的腹水 | digital pathology | liver cirrhosis, ovarian cancer | deep learning | CNN | CT scans | 315 patients (25 NIH-LC, 166 NIH-OV, 124 UofW-LC) |
28 | 2025-06-15 |
Explainable AI based automated segmentation and multi-stage classification of gastroesophageal reflux using machine learning techniques
2024-06-28, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ad5a14
PMID:38901416
|
研究论文 | 本文提出了一种基于可解释AI的自动化分割和多阶段分类方法,用于诊断胃食管反流病(GERD) | 开发了一个针对胃肠道疾病诊断的系统,结合了Yolov5目标检测、DeepLabV3+分割和多种机器学习分类器进行多阶段分类 | NA | 通过计算机辅助技术快速准确地诊断胃食管反流病(GERD) | 胃食管反流病(GERD)患者的内窥镜图像 | 数字病理学 | 胃食管反流病 | 视频内窥镜 | Yolov5, DeepLabV3+, SVM, 自定义深度神经网络 | 图像 | NA |
29 | 2025-06-15 |
An extensive analysis of artificial intelligence and segmentation methods transforming cancer recognition in medical imaging
2024-06-18, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ad555b
PMID:38848695
|
综述 | 本文全面分析了人工智能和分割方法在医学影像中癌症识别的应用 | 重点评估了卷积神经网络(CNNs)在医学图像分割和分类中的自学习和决策能力 | 现有图像分割方法在应用于某些特定类型图像时存在局限性 | 探讨图像分割技术在医学影像中癌症识别的重要性和应用 | 医学影像中的癌症区域 | 计算机视觉 | 癌症 | 计算机辅助诊断(CAD)系统 | CNN | 医学影像 | NA |
30 | 2025-06-15 |
A systematic evaluation of Euclidean alignment with deep learning for EEG decoding
2024-06-11, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/ad4f18
PMID:38776898
|
研究论文 | 本文系统地评估了欧几里得对齐与深度学习结合在脑电图解码中的效果 | 首次系统地评估了欧几里得对齐(EA)对共享和个体深度学习模型训练性能的影响,并展示了其在提高解码准确性和减少收敛时间方面的优势 | 研究仅针对脑机接口(BCI)任务,未探讨EA在其他领域的适用性 | 评估欧几里得对齐与深度学习结合在脑电图信号解码中的效果 | 脑电图信号和深度学习模型 | 机器学习 | NA | 深度学习 | DL | 脑电图信号 | 多个受试者的数据 |
31 | 2025-06-15 |
Optimizing motor imagery BCI models with hard trials removal and model refinement
2024-06-04, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ad4f8e
PMID:38781932
|
研究论文 | 本文提出两种新方法来识别和减轻困难试验对运动想象脑机接口模型性能的影响 | 提出基于模型预测分数和可解释人工智能(XAI)的定量方法来识别困难试验,并通过移除这些试验来优化模型性能 | 实验仅在Open BMI数据集上进行,未在其他数据集上验证方法的普适性 | 优化运动想象脑机接口(BCI)模型的分类性能 | 运动想象BCI系统中的困难试验 | 机器学习 | NA | 定量可解释人工智能(XAI) | 深度CNN | 脑电图(EEG)数据 | Open BMI数据集中的样本 |
32 | 2025-06-10 |
Protocol to perform integrative analysis of high-dimensional single-cell multimodal data using an interpretable deep learning technique
2024-06-21, STAR protocols
IF:1.3Q4
DOI:10.1016/j.xpro.2024.103066
PMID:38748882
|
研究论文 | 本文提出了一种使用可解释深度学习技术moETM进行高维单细胞多模态数据整合分析的协议 | 开发了一种名为moETM的可解释深度学习技术,用于整合单细胞多组学数据,并结合先验通路知识进行跨组学插补 | 协议的具体执行细节需要参考原始研究,可能对数据预处理要求较高 | 开发单细胞多组学数据整合分析方法 | 单细胞多组学数据 | 机器学习 | NA | 单细胞多组学测序技术 | moETM | 单细胞多组学数据 | 骨髓单核细胞数据(GSE194122) |
33 | 2025-06-10 |
A deep learning framework for denoising and ordering scRNA-seq data using adversarial autoencoder with dynamic batching
2024-06-21, STAR protocols
IF:1.3Q4
DOI:10.1016/j.xpro.2024.103067
PMID:38748883
|
研究论文 | 提出了一种名为动态批处理对抗自编码器(DB-AAE)的深度学习框架,用于去噪单细胞RNA测序(scRNA-seq)数据集 | 采用动态批处理对抗自编码器(DB-AAE)进行scRNA-seq数据的去噪和排序 | 未提及具体的数据集规模或实验结果的广泛验证 | 解决scRNA-seq数据中的技术噪声问题,提高数据质量 | 单细胞RNA测序(scRNA-seq)数据 | 机器学习 | NA | scRNA-seq | 对抗自编码器(AAE) | 基因表达数据 | NA |
34 | 2025-06-07 |
Scan-Specific Self-Supervised Bayesian Deep Non-Linear Inversion for Undersampled MRI Reconstruction
2024-06, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3364911
PMID:38335079
|
research paper | 提出一种用于欠采样MRI重建的扫描特异性自监督贝叶斯深度非线性反演方法 | 无需自动校准扫描区域,采用深度图像先验型生成建模方法和近似贝叶斯推理来正则化深度卷积神经网络 | 需要进一步验证在不同解剖结构、对比度和采样模式下的广泛适用性 | 提高欠采样MRI重建的效率和准确性 | 欠采样的MRI数据 | 医学影像处理 | NA | 深度卷积神经网络,贝叶斯推理 | CNN | MRI图像 | 多种解剖结构、对比度和采样模式的MRI数据 |
35 | 2025-06-06 |
AUTOMATED DETECTION OF VITRITIS USING ULTRAWIDE-FIELD FUNDUS PHOTOGRAPHS AND DEEP LEARNING
2024-06-01, Retina (Philadelphia, Pa.)
DOI:10.1097/IAE.0000000000004049
PMID:38261816
|
研究论文 | 本研究开发了一种基于深度学习的算法,用于自动检测和分级超广角眼底照片中的玻璃体炎 | 首次利用超广角眼底成像和深度学习技术进行玻璃体炎的自动检测和分级 | 六分类玻璃体炎分级的准确性有限(0.61),可能需要更大样本量来提高模型性能 | 评估深度学习算法在超广角成像上自动检测和分级玻璃体炎的性能 | 葡萄膜炎患者的超广角眼底视网膜照片 | 数字病理 | 葡萄膜炎 | 超广角眼底成像 | DenseNet121 CNN | 图像 | 1181张图像 |
36 | 2025-06-06 |
OMERACT validation of a deep learning algorithm for automated absolute quantification of knee joint effusion versus manual semi-quantitative assessment
2024-06, Seminars in arthritis and rheumatism
IF:4.6Q1
DOI:10.1016/j.semarthrit.2024.152420
PMID:38422727
|
研究论文 | 本文通过OMERACT过滤器评估深度学习算法在膝关节积液自动绝对量化中的应用 | 首次使用深度学习算法对膝关节积液进行自动绝对量化,并与人工半定量评估进行对比 | 需要进一步评估算法的区分能力和与临床结果的一致性,以完全满足OMERACT过滤器的要求 | 评估深度学习算法在膝关节积液量化中的有效性 | 53名OAI受试者的膝关节MRI数据 | 数字病理学 | 骨关节炎 | 深度学习 | DL算法 | MRI图像 | 53名受试者 |
37 | 2025-06-05 |
Spach Transformer: Spatial and Channel-Wise Transformer Based on Local and Global Self-Attentions for PET Image Denoising
2024-06, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2023.3336237
PMID:37995174
|
research paper | 提出了一种名为Spach Transformer的空间和通道编码器-解码器变换器,用于PET图像去噪 | 结合局部和全局多头自注意力机制(MSA),有效利用空间和通道信息,同时降低计算成本 | 未提及具体计算成本降低的量化数据或与其他方法的详细比较 | 提高PET图像的信噪比(SNR) | PET图像 | computer vision | NA | 深度学习 | Transformer, CNN | image | 使用不同PET示踪剂(18F-FDG、18F-ACBC、18F-DCFPyL和68Ga-DOTATATE)的数据集进行实验 |
38 | 2025-06-05 |
Multibranch CNN With MLP-Mixer-Based Feature Exploration for High-Performance Disease Diagnosis
2024-06, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2023.3250490
PMID:37028335
|
研究论文 | 提出了一种名为ME-Mixer的新型特征探索网络,结合监督和非监督特征用于疾病诊断 | 利用流形嵌入多层感知器(MLP)混合器(ME-Mixer)进行特征探索,结合监督和非监督特征提升诊断性能 | 仅在两个医学数据集上进行了评估,可能需要更多数据验证其泛化能力 | 优化深度神经网络设计以实现高性能疾病诊断 | 医学图像数据 | 数字病理 | NA | 深度学习 | CNN, MLP-Mixer | 图像 | 两个医学数据集(未明确样本数量) |
39 | 2025-06-04 |
AmyloidPETNet: Classification of Amyloid Positivity in Brain PET Imaging Using End-to-End Deep Learning
2024-06, Radiology
IF:12.1Q1
DOI:10.1148/radiol.231442
PMID:38860897
|
research paper | 开发了一种名为AmyloidPETNet的深度学习模型,用于对脑部PET扫描进行淀粉样蛋白阳性或阴性分类 | 该模型能够自动准确分类脑部PET扫描,无需依赖经验丰富的读者或结构MRI | 研究为回顾性研究,可能受到数据选择和时间的限制 | 开发并评估一个深度学习模型,用于脑部PET扫描的淀粉样蛋白阳性或阴性分类 | 脑部PET扫描 | digital pathology | Alzheimer's Disease | PET imaging | CNN | image | 8476 PET scans (6722 patients) |
40 | 2025-06-04 |
Deep learning-based harmonization of trabecular bone microstructures between high- and low-resolution CT imaging
2024-Jun, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17003
PMID:38415781
|
研究论文 | 本文提出了一种基于深度学习的骨微结构图像协调方法,用于处理低分辨率和高分辨率CT扫描仪获取的图像数据 | 提出了3D版本的GAN-CIRCLE方法,通过两个生成对抗网络同时学习低分辨率CT到高分辨率CT的映射及其反向映射,实现了图像数据的协调 | 样本量较小,仅招募了20名志愿者,且仅对胫骨远端进行了扫描 | 开发一种深度学习方法,用于协调不同分辨率CT扫描仪获取的骨微结构图像数据 | 骨微结构图像数据,特别是胫骨远端的低分辨率和高分辨率CT图像 | 医学影像处理 | 骨质疏松症 | CT扫描 | GAN-CIRCLE | 3D图像 | 20名志愿者,500对64×64×64体素的图像块用于训练,8名志愿者的数据用于评估 |