本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
601 | 2024-08-07 |
Deep learning for 3D biliary anatomy for living liver donor hepatectomy planning
2024-Jun-01, International journal of surgery (London, England)
DOI:10.1097/JS9.0000000000001274
PMID:38446840
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
602 | 2024-08-05 |
Hybrid deep learning and optimized clustering mechanism for load balancing and fault tolerance in cloud computing
2024-Jun-27, Network (Bristol, England)
DOI:10.1080/0954898X.2024.2369137
PMID:38934441
|
研究论文 | 本文提出了一种基于混合深度学习的负载平衡算法 | 创新点在于结合多种因素进行负载平衡和故障容忍的深度学习算法 | 未提及具体的限制因素 | 研究云计算中的负载平衡和故障容忍机制 | 研究对象为多个虚拟机(VM)的任务分配 | 计算机视觉 | NA | 深度学习 | Deep Q Recurrent Neural Network (DQRNN) | 负载、容量、资源消耗数据 | 未提及样本数量 |
603 | 2024-08-05 |
A flexible, stretchable and wearable strain sensor based on physical eutectogels for deep learning-assisted motion identification
2024-Jun-27, Journal of materials chemistry. B
DOI:10.1039/d4tb00809j
PMID:38836422
|
研究论文 | 本文介绍了一种基于物理共晶胶的新型可穿戴应变传感器 | 通过在深共晶溶剂中直接溶解木质素,制备出具有优良性能的物理共晶胶,创新性地结合深度学习技术实现手势识别 | 尽管改善了机械性能和导电性,但仍可能存在材料的长期耐用性和在极端条件下的表现未知 | 探索新型物理共晶胶的应用于可穿戴电子设备的可能性 | 采用木质素增强的物理共晶胶作为应变传感器材料 | 数字病理学 | NA | 深共晶溶剂(DES) | 深度学习 | NA | NA |
604 | 2024-08-05 |
High-accuracy heart rate detection using multispectral IPPG technology combined with a deep learning algorithm
2024-Jun-27, Journal of biophotonics
IF:2.0Q3
DOI:10.1002/jbio.202400119
PMID:38932695
|
研究论文 | 本文提出了一种基于多光谱视频的人体心率检测方法 | 创新点在于结合多光谱成像和IPPG技术,在运动状态下实现高精度心率检测 | NA | 改善传统心率检测技术的精准度和实时性 | 多光谱视频数据集中的心率数据 | 计算机视觉 | NA | IPPG技术 | IPPGResNet18 | 视频 | NA |
605 | 2024-08-05 |
Magnetic nanoparticles for magnetic particle imaging (MPI): design and applications
2024-Jun-27, Nanoscale
IF:5.8Q1
DOI:10.1039/d4nr01195c
PMID:38809214
|
review | 本综述探讨了磁性粒子成像(MPI)的基本原理、仪器、磁性纳米粒子示踪剂设计及其应用 | 新型示踪剂设计如锌掺杂铁氧体纳米粒子(Zn-IONPs)和超铁磁铁氧化物纳米粒子链(SFMIOs)提高了MPI的成像质量和临床应用 | NA | 阐明磁性粒子成像(MPI)的进展及其在医学成像中的应用潜力 | 磁性纳米粒子和其作为示踪剂在成像中的应用 | 医学成像 | NA | 磁性粒子成像(MPI) | NA | 成像 | NA |
606 | 2024-08-05 |
A Multimodel-Based Screening Framework for C-19 Using Deep Learning-Inspired Data Fusion
2024-Jun-26, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3400878
PMID:38923476
|
研究论文 | 本文提出了一种基于深度学习的数据融合的多模型筛查框架,用于COVID-19的检测。 | 创新点在于提出了一种多模态数据融合模型,并引入了变异编码器和数据减少机制以提高筛查结果的准确性。 | 现有模型在资源要求方面不足,且不适合轻量化环境。 | 研究目标是提升COVID-19的远程筛查和监测效率。 | 研究对象为利用可穿戴传感器和电子记录数据进行COVID-19筛查的框架。 | 数字病理学 | COVID-19 | 深度学习启发的数据融合 | 多模态融合模型 | 电子记录和可穿戴传感器数据 | 实验室数据集,样本数量未说明 |
607 | 2024-08-05 |
An automated in vitro wound healing microscopy image analysis approach utilizing U-net-based deep learning methodology
2024-Jun-25, BMC medical imaging
IF:2.9Q2
DOI:10.1186/s12880-024-01332-2
PMID:38914942
|
研究论文 | 本文提出了一种基于U-net的深度学习方法的自动化体外伤口愈合显微图像分析方法 | 创新性地采用三种不同结构的U-net架构来提高伤口愈合图像分割的敏感性 | 未提及具体的限制因素 | 旨在提高体外伤口愈合图像分析的准确性和效率 | 体外伤口愈合显微图像 | 计算机视觉 | NA | 深度学习 | U-net, U-net++, Attention U-net | 图像 | 使用了两个独立的数据集 |
608 | 2024-08-05 |
Temporal dynamics of user activities: deep learning strategies and mathematical modeling for long-term and short-term profiling
2024-Jun-24, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-64120-6
PMID:38914596
|
研究论文 | 该论文探讨了社交媒体用户的个人特点分析方法 | 提出了一种结合深度学习策略和数学建模来描述用户长期和短期画像的新方法 | 模型的有效性可能依赖于特定类型的社交媒体数据 | 构建一个能够描述用户行为的协作模型 | 社交媒体用户及其活动 | 机器学习 | NA | 双向LSTM和GRU | NA | 文本 | 30,000条推文 |
609 | 2024-08-05 |
Tongue image fusion and analysis of thermal and visible images in diabetes mellitus using machine learning techniques
2024-06-24, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-64150-0
PMID:38914599
|
研究论文 | 本研究旨在通过机器学习技术对糖尿病患者的热成像和可见成像舌头图像进行融合与分析 | 提出使用离散小波变换(DWT)的多种融合规则来分类糖尿病和正常受试者,并应用深度学习和机器学习算法进行健康与糖尿病的区分 | 研究未提及样本的多样性和长期跟踪观察的不足 | 评估融合的舌头图像在糖尿病筛查中的应用 | 包含80名正常受试者和80名糖尿病患者的参与者 | 机器学习 | 糖尿病 | 数字单镜头参考相机和热红外相机 | VGG16和ResNet50 | 图像 | 160个样本,包括80名正常受试者和80名糖尿病患者 |
610 | 2024-08-05 |
3D residual attention hierarchical fusion for real-time detection of the prostate capsule
2024-Jun-24, BMC medical imaging
IF:2.9Q2
DOI:10.1186/s12880-024-01336-y
PMID:38914956
|
研究论文 | 该文章提出了一种深度学习方法,用于实时检测前列腺囊膜。 | 提出了一种基于3D残差注意力机制的改进单次多框检测器模型,并使用了Simple, Parameter-Free Attention Module(SimAM)残差注意力融合模块。 | NA | 开发一种用于内窥镜光学图像检测前列腺囊膜的深度学习方法。 | 前列腺囊膜的检测。 | 计算机视觉 | 前列腺癌 | 深度学习 | 3D残差注意力机制 | 内窥镜光学图像 | NA |
611 | 2024-08-05 |
PET/CT deep learning prognosis for treatment decision support in esophageal squamous cell carcinoma
2024-Jun-24, Insights into imaging
IF:4.1Q1
DOI:10.1186/s13244-024-01737-1
PMID:38913225
|
研究论文 | 本研究提出了一种基于PET/CT图像的深度学习方法,以改善食管鳞状细胞癌患者的生存益处和临床管理 | 提出了一个整合六个网络的预治疗PET/CT深度学习模型ESCCPro,用于提高食管鳞状细胞癌患者的生存预测准确性 | 该研究为回顾性多中心研究,可能存在选择偏倚,且未考虑所有潜在的临床变量 | 改善食管鳞状细胞癌患者的生存益处和临床决策 | 837名来自三个机构的食管鳞状细胞癌患者 | 数字病理学 | 食管癌 | PET/CT深度学习 | 集成模型(ESCCPro) | 图像 | 837名食管鳞状细胞癌患者 |
612 | 2024-08-05 |
CMCS: contrastive-metric learning via vector-level sampling and augmentation for code search
2024-Jun-24, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-64205-2
PMID:38914579
|
研究论文 | 本文提出了一种基于向量级采样和增强的对比度度量学习CMCS用于代码搜索 | 创新性地提出了一种结合K均值算法的硬负样本采样方法和可控硬度样本增强的方法 | 未提到具体的局限性 | 研究目的在于提高代码搜索模型的训练效率和搜索性能 | 研究对象为代码搜索模型 | 计算机视觉 | NA | 深度学习 | NA | 代码数据 | 使用了大规模数据集CodeSearchNet的七个先进代码搜索模型进行实验 |
613 | 2024-08-05 |
Associations of street-view greenspace with Parkinson's disease hospitalizations in an open cohort of elderly US Medicare beneficiaries
2024-Jun, Environment international
IF:10.3Q1
DOI:10.1016/j.envint.2024.108739
PMID:38754245
|
研究论文 | 该研究评估了街景绿色空间与帕金森病住院的关联。 | 首次使用街景图像与深度学习算法评估绿色空间特征对帕金森病住院的影响。 | 研究主要集中在美国的特定区域,结果可能不具普遍性。 | 评估街景绿色空间对帕金森病住院的影响。 | 大约4560万名65岁及以上的美国医疗保险受益者。 | 数字病理学 | 帕金森病 | 深度学习 | Cox等价重参数化Poisson模型 | 图像 | 506,899次首例帕金森病相关住院,随访时间为254,917,192人年 |
614 | 2024-08-05 |
Detecting QT prolongation from a single-lead ECG with deep learning
2024-Jun, PLOS digital health
DOI:10.1371/journal.pdig.0000539
PMID:38917157
|
研究论文 | 该文章开发了一种深度学习模型,能够从单导联心电图中推断QT间期并检测QT延长。 | 提出了一种名为QTNet的深度神经网络,能够通过Lead-I心电图推断QT间期,并有效检测药物诱发的QT延长。 | 模型依赖于高质量的心电图数据,同时在特定人群和临床环境中评估,其适用性可能受到限制。 | 旨在实现无住院QT监测,特别是在抗心律失常药物的加载过程中。 | 研究对象包括来自多个医院的心电图数据及接受Dofetilide治疗的患者。 | 数字病理 | 心血管疾病 | 深度学习 | 深度神经网络 | 心电图 | 超过300万份心电图,涉及653千名患者 |
615 | 2024-08-05 |
Fostering Clinical Judgment and Promoting Transition Into First Clinical Rotation Through Active Learning
2024-Jun-27, Nursing education perspectives
IF:0.9Q3
DOI:10.1097/01.NEP.0000000000001293
PMID:38920415
|
研究论文 | 本科护理教育通过互动课堂活动促进临床判断技能的发展 | 提出了一种新的互动课堂活动以增强批判性思维和临床判断能力 | 未提及实验样本的多样性和长期效果的评估 | 研究如何将课堂知识有效转化为临床实践 | 参与了BSN项目第一学期课程的本科护理学生 | NA | NA | 互动学习 | NA | NA | 参与了第一学期课程的学生 |
616 | 2024-08-05 |
Harmonizing Elastic Modulus and Dielectric Constant of Elastomers for Improved Pressure Sensing Performance
2024-Jun-26, ACS applied materials & interfaces
IF:8.3Q1
DOI:10.1021/acsami.4c06122
PMID:38864718
|
研究论文 | 通过液态金属混合弹性体提升电容压力传感器的灵敏度和可靠性 | 引入无链延伸聚氨酯和液态金属的混合弹性体,平衡电介质层材料的弹性模量和介电常数,从而增强传感性能 | 增加复杂的制造过程和设备可靠性可能受到影响 | 研究如何优化电容压力传感器的性能 | 液态金属混合弹性体及其在压力传感器中的应用 | 材料科学 | NA | 电容传感技术 | CNN | NA | NA |
617 | 2024-08-05 |
An improved empirical mode decomposition method with ensemble classifiers for analysis of multichannel EEG in BCI emotion recognition
2024-Jun-26, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2024.2369257
PMID:38920119
|
研究论文 | 本文提出了一种改进的经验模态分解方法,结合了集成分类器用于多通道EEG信号的情感识别 | 提出了基于IEMD的混合模型,改进了筛选停止准则,以优化EEG信号的分解 | 未提及关于模型在实际应用中的局限性 | 提高多通道EEG信号中情感识别的效率 | 多通道EEG信号及其情感识别 | 数字病理学 | NA | IEMD-KW-Ens | CNN | 信号 | 使用DEAP和DREAMER数据集进行实验 |
618 | 2024-08-05 |
Classifying real-world macroscopic images in the primary-secondary care interface using transfer learning: implications for development of artificial intelligence solutions using nondermoscopic images
2024-Jun-25, Clinical and experimental dermatology
IF:3.7Q1
DOI:10.1093/ced/llad400
PMID:37990943
|
研究论文 | 本研究评估深度学习在非皮肤镜影像数据集上的泛化能力,并探讨如何在缺乏大型诊断标记数据集的情况下获得临床满意的表现 | 引入了在非皮肤镜图像上进行的深度学习模型的训练和微调方法,并探索了真实世界数据的有效利用 | 本研究依赖于已有的数据集,没有构建更大的地方特定数据集 | 评估深度学习如何在初级-次级护理接口的非皮肤镜数据集上泛化 | 2213张来自初级护理的图像和1510张来自次级护理的图像 | 计算机视觉 | 皮肤病 | 深度学习 | EfficientNet和SWIN变换器 | 图像 | 总共3723张来自NHS的数据,外加公共领域的两个数据集 |
619 | 2024-08-05 |
ChatGPT versus clinician: challenging the diagnostic capabilities of artificial intelligence in dermatology
2024-Jun-25, Clinical and experimental dermatology
IF:3.7Q1
DOI:10.1093/ced/llad402
PMID:37979201
|
研究论文 | 本文研究了ChatGPT在皮肤科诊断中的能力 | 首次将ChatGPT的诊断能力与皮肤科医生进行比较 | ChatGPT在当前形式下未能显著提高初级或次级护理的诊断率 | 评估ChatGPT在医疗皮肤科病例中的诊断能力 | 对90名在皮肤科急诊诊所就诊的患者的匿名医疗信息进行分析 | 自然语言处理 | 皮肤病 | 深度学习技术 | NA | 临床信息 | 36名患者 |
620 | 2024-08-05 |
Estimating mandibular growth stage based on cervical vertebral maturation in lateral cephalometric radiographs using artificial intelligence
2024-Jun-24, Progress in orthodontics
IF:3.5Q1
DOI:10.1186/s40510-024-00527-1
PMID:38910180
|
研究论文 | 本研究旨在利用人工智能通过侧位头影测量图估计下颌骨生长阶段。 | 提出了一种新的方法,将颈椎与下颌骨生长斜率直接相关联,区别于以往的常规CVM阶段命名。 | 研究仅限于200名样本,可能影响结果的广泛适用性。 | 研究旨在确定下颌骨生长阶段以优化正畸治疗时机。 | 研究对象为200名患者的侧位头影测量图像,包含108名女性和92名男性。 | 数字病理学 | NA | 深度学习 | CNN, ResNet-18 | 图像 | 200人,663幅图像 |