深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202406-202406] [清除筛选条件]
当前共找到 1034 篇文献,本页显示第 61 - 80 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
61 2025-05-18
Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment
2024-Jun, Nature medicine IF:58.7Q1
研究论文 介绍了一种名为MRD-EDGE的机器学习引导的WGS ctDNA检测平台,用于提高肿瘤负荷监测的灵敏度 MRD-EDGE通过深度学习和ctDNA特异性特征空间,将WGS中的SNV信噪比提高了约300倍,并将CNV检测所需的非整倍性程度从1 Gb降低到200 Mb NA 提高循环肿瘤DNA(ctDNA)在低肿瘤分数(TF)环境中的检测灵敏度,用于微小残留病(MRD)评估和治疗反应监测 多种癌症类型中的ctDNA,包括肺癌、结直肠腺瘤和晚期黑色素瘤 机器学习 肺癌、结直肠癌、黑色素瘤 全基因组测序(WGS) 深度学习 DNA测序数据 NA
62 2025-05-17
An updated compendium and reevaluation of the evidence for nuclear transcription factor occupancy over the mitochondrial genome
2024-Jun-06, bioRxiv : the preprint server for biology
研究论文 本文通过分析扩展的ENCODE TF ChIP-seq数据集和深度学习模型,创建了一个全面的核转录因子与线粒体基因组关联的汇编 利用扩展的ENCODE数据集和深度学习模型,首次全面汇编了核转录因子与线粒体基因组的关联证据 部分核转录因子的chrM占用证据在不同抗体和ChIP协议下不可重复 评估核转录因子在线粒体基因组上的占用证据 核转录因子与线粒体基因组的关联 基因组学 NA ChIP-seq, 深度学习 深度学习模型 基因组数据 6,153个ChIP实验,涉及942种蛋白质(其中763种为序列特异性TF)
63 2025-05-17
ProkDBP: Toward more precise identification of prokaryotic DNA binding proteins
2024-Jun, Protein science : a publication of the Protein Society IF:4.5Q1
研究论文 提出了一种名为ProkDBP的新型机器学习模型,用于更精确地预测原核DNA结合蛋白 ProkDBP模型结合了浅层学习算法和进化重要特征,显著提高了预测原核DNA结合蛋白的准确性 未提及具体样本量或数据集的详细构成 开发高精度的计算模型以预测原核DNA结合蛋白,促进原核生物学研究和疾病干预治疗的发展 原核DNA结合蛋白 机器学习 NA 随机森林变量重要性测量(RF-VIM), 光梯度提升机(LGBM) 浅层学习算法和深度学习模型 蛋白质序列数据 NA
64 2025-05-16
ASPTF: A computational tool to predict abiotic stress-responsive transcription factors in plants by employing machine learning algorithms
2024-06, Biochimica et biophysica acta. General subjects
研究论文 开发了一个名为ASPTF的计算工具,通过机器学习算法预测植物中响应非生物胁迫的转录因子 结合了浅层学习和深度学习算法,并采用特征选择技术提高预测准确性 未提及模型在跨物种应用中的泛化能力 识别与植物非生物胁迫响应相关的转录因子,以培育抗逆作物品种 植物转录因子 机器学习 NA 机器学习算法(包括浅层学习和深度学习) LGBM(Light-Gradient Boosting Machine) 序列数据 未明确提及具体样本数量
65 2025-05-15
TA-RNN: an attention-based time-aware recurrent neural network architecture for electronic health records
2024-06-28, Bioinformatics (Oxford, England)
研究论文 提出了一种基于注意力机制的时间感知循环神经网络架构TA-RNN,用于电子健康记录分析 提出了两种可解释的深度学习架构TA-RNN和TA-RNN-AE,通过时间嵌入处理临床访问间隔不规则问题,并采用双级注意力机制提高模型可解释性 模型性能仅在特定疾病(阿尔茨海默病)和特定数据集上验证 开发可解释的深度学习模型来预测患者临床结果 电子健康记录(EHR)数据 机器学习 阿尔茨海默病 深度学习 RNN, TA-RNN, TA-RNN-AE 电子健康记录 ADNI和NACC数据集(阿尔茨海默病),MIMIC-III数据集(死亡率预测)
66 2025-05-13
Leveraging Large Language Models for Knowledge-free Weak Supervision in Clinical Natural Language Processing
2024-Jun-28, Research square
研究论文 本文提出了一种利用大型语言模型(LLMs)进行无领域知识的弱监督方法,用于临床自然语言处理任务 通过微调LLMs并采用基于提示的方法生成弱标记数据,结合少量黄金标准数据微调下游BERT模型,显著提升了性能 LLMs推理计算量大,且性能仍略低于使用大量黄金标准数据的传统监督方法 解决临床自然语言处理任务中标注数据稀缺的问题 临床文本数据 自然语言处理 NA 弱监督学习、上下文学习 LLM(Llama2)、BERT 文本 三个n2c2数据集,不超过10-50份黄金标准临床记录
67 2025-05-13
Improved stent sharpness evaluation with super-resolution deep learning reconstruction in coronary CT angiography
2024-Jun-18, The British journal of radiology
研究论文 本研究评估了超分辨率深度学习重建(SR-DLR)在冠状动脉CT血管造影(CCTA)中对图像质量和支架伪影的影响 首次将SR-DLR应用于CCTA图像重建,显著提高了支架的清晰度和图像质量 研究为回顾性分析,样本量较小(66例患者) 评估不同图像重建算法对冠状动脉支架成像质量的影响 冠状动脉CT血管造影图像 医学影像处理 心血管疾病 超分辨率深度学习重建(SR-DLR) 深度学习模型 医学影像 66例CCTA患者
68 2025-05-10
Streamlining social media information retrieval for public health research with deep learning
2024-Jun-20, Journal of the American Medical Informatics Association : JAMIA IF:4.7Q1
research paper 该研究开发了一个深度学习系统,用于从社交媒体数据中提取和规范化医学术语,以改进公共卫生研究中的流行病监测 提出了一种新颖的系统化流程,用于从社交媒体数据中整理症状词典,相比传统的关键词匹配方法能更有效地识别精神疾病症状 研究仅基于COVID-19相关推文,可能不适用于其他疾病或语境 改进公共卫生研究中社交媒体数据的利用效率 COVID-19相关推文中的症状描述 natural language processing COVID-19 named entity recognition, entity normalization deep learning text 498,480条独特的症状实体表达(处理后为38,175条)
69 2025-05-08
Tailored Intraoperative MRI Strategies in High-Grade Glioma Surgery: A Machine Learning-Based Radiomics Model Highlights Selective Benefits
2024-Jun-01, Operative neurosurgery (Hagerstown, Md.)
research paper 该研究探讨了在高等级胶质瘤手术中,结合机器学习的放射组学模型预测5-ALA单独使用效果不佳的情况,并强调了iMRI在特定复杂病例中的辅助价值 开发了一种基于U2-Net深度学习算法的放射组学模型,能够准确预测5-ALA在HGG手术中的效果不佳情况,为个性化手术策略提供依据 样本量较小(73例患者),且iMRI与5-ALA联合使用的效果提升未达到统计学显著性 评估在高等级胶质瘤手术中iMRI的辅助价值,并开发预测模型以优化手术策略 73例高等级胶质瘤患者 digital pathology high-grade glioma intraoperative MRI (iMRI), 5-aminolevulinic acid (5-ALA), radiomics U2-Net, binary logistic regression MRI图像 73例高等级胶质瘤患者
70 2025-05-07
Single-cell multi-omics analysis reveals cooperative transcription factors for gene regulation in oligodendrocytes
2024-Jun-21, bioRxiv : the preprint server for biology
研究论文 通过单细胞多组学分析揭示少突胶质细胞中转录因子的协同调控机制 整合scRNA-seq和scATAC-seq数据,利用深度学习模型预测目标基因表达,并计算TF重要性和TF-TF相互作用分数,揭示了少突胶质细胞中转录因子的协同调控机制 研究主要基于计算模型预测,部分结果需要实验验证 探究少突胶质细胞中转录因子如何协同调控基因表达 少突胶质细胞中的转录因子及其靶基因 生物信息学 脑部疾病 scRNA-seq, scATAC-seq, 深度学习, ChIP-seq 深度学习模型 单细胞多组学数据 NA
71 2025-05-03
Deep Learning-Based Assessment of Built Environment From Satellite Images and Cardiometabolic Disease Prevalence
2024-Jun-01, JAMA cardiology IF:14.8Q1
研究论文 本研究利用深度学习技术从卫星图像中提取建筑环境特征,并探讨其与城市中心脏代谢疾病患病率之间的关联 首次大规模使用Google卫星图像结合卷积神经网络评估建筑环境与心脏代谢疾病的关系,并发现特定建筑环境特征与疾病的相关性 横断面研究设计无法确定因果关系,且仅覆盖了美国7个城市的数据 探究基于图像的建筑环境特征与心脏代谢疾病患病率之间的关系 美国7个城市(克利夫兰、弗里蒙特等)的789个人口普查区的建筑环境和居民健康数据 计算机视觉 心血管疾病 卫星图像分析 CNN(卷积神经网络)、LightGBM(轻量梯度提升机) 卫星图像、人口普查数据 31,786张航拍图像覆盖789个人口普查区
72 2025-05-01
DMAF-Net: deformable multi-scale adaptive fusion network for dental structure detection with panoramic radiographs
2024-06-28, Dento maxillo facial radiology
研究论文 提出了一种名为DMAF-Net的可变形多尺度自适应融合网络,用于全景X光片中的牙齿结构检测 改进了YOLO网络,通过不同模块增强特征提取能力,并利用自适应空间特征融合解决不同特征层尺度不匹配的问题 NA 提高全景X光片中牙齿结构问题检测的准确性 牙齿结构问题(阻生牙、缺失牙、种植体、冠修复体和根管治疗牙) 计算机视觉 牙科疾病 深度学习 DMAF-Net(基于YOLO改进) 图像(全景X光片) 1474张全景X光片
73 2025-04-26
Sex estimation from maxillofacial radiographs using a deep learning approach
2024-06-01, Dental materials journal IF:1.9Q4
研究论文 本研究构建了深度学习模型用于更高效和可靠的性别估计 使用VGG16和DenseNet-121两种深度学习模型进行性别估计,并通过显著性图分析模型关注区域 研究为回顾性研究,样本量仅为600例 开发高效可靠的性别估计方法 600例头颅侧位X光片 计算机视觉 NA 深度学习 VGG16, DenseNet-121 医学影像 600例头颅侧位X光片
74 2025-04-25
Analyzing heterogeneity in Alzheimer Disease using multimodal normative modeling on imaging-based ATN biomarkers
2024-Jun-30, bioRxiv : the preprint server for biology
research paper 本研究采用基于深度学习的多模态规范框架,分析阿尔茨海默病(AD)患者个体水平的ATN成像生物标志物变异 首次将多模态规范建模应用于ATN成像生物标志物,以分析AD的异质性 研究仅基于横断面数据,缺乏纵向追踪验证 探究阿尔茨海默病的异质性表现 阿尔茨海默病患者(淀粉样蛋白阳性个体)与对照组(淀粉样蛋白阴性个体) digital pathology geriatric disease T1加权MRI、淀粉样蛋白PET、tau蛋白PET 深度学习模型 医学影像数据 发现队列665人,验证队列430人
75 2025-04-25
Enhanced Cell Tracking Using A GAN-based Super-Resolution Video-to-Video Time-Lapse Microscopy Generative Model
2024-Jun-14, bioRxiv : the preprint server for biology
research paper 该论文提出了一种基于GAN的超分辨率视频到视频延时显微镜生成模型,用于增强细胞追踪 提出了一种称为tGAN的GAN-based延时显微镜生成器,能够显著提高合成注释延时显微镜数据的质量和多样性,采用双分辨率架构合成低分辨率和高分辨率图像 需要进一步验证模型在更大规模和多样性数据集上的泛化能力 解决细胞追踪中由于缺乏大规模多样化注释数据集而导致的深度学习模型泛化能力不足的问题 细胞动态行为 digital pathology NA time-lapse microscopy GAN video NA
76 2025-04-25
Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images
2024-Jun-10, bioRxiv : the preprint server for biology
研究论文 本研究验证了Cellpose在自发荧光显微镜图像中的单细胞分割可靠性 首次将Cellpose应用于低信噪比的自发荧光显微镜图像分割,并验证其在代谢成像中的准确性 研究仅针对NAD(P)H自发荧光图像进行验证,未涵盖其他类型的自发荧光 开发适用于自发荧光显微镜图像的可靠细胞分割工具 PANC-1细胞和来自9名患者的癌症类器官 数字病理学 癌症 多光子强度成像、荧光寿命成像显微镜(FLIM) Cellpose深度学习网络 显微图像 PANC-1细胞系和9例患者来源的癌症类器官
77 2025-04-24
Integrated Fibrous Iontronic Pressure Sensors with High Sensitivity and Reliability for Human Plantar Pressure and Gait Analysis
2024-06-04, ACS nano IF:15.8Q1
research paper 开发了一种高灵敏度和可靠性的集成纤维离子压力传感器,用于人体足底压力和步态分析 采用高模量多孔层压离子纤维结构和统一聚酰亚胺材料系统,具有高灵敏度(156.6 kPa)、广泛感应范围(高达4000 kPa)和增强的界面韧性和耐久性(超过150,000次循环) 当前柔性传感器的有效性受到结构可变形性限制、多功能层之间的机械不兼容性以及复杂应力条件下的不稳定性等挑战的阻碍 开发一种用于足底压力和步态分析的柔性压力传感器,确保长期稳定性和准确性 人体足底压力和步态 柔性电子 足部疾病 离子压力传感技术 深度学习 压力分布数据 NA
78 2025-04-23
Prognostication of Hepatocellular Carcinoma Using Artificial Intelligence
2024-06, Korean journal of radiology IF:4.4Q1
综述 本文综述了人工智能在肝细胞癌预后预测中的潜在价值及其局限性和未来前景 利用人工智能(特别是放射组学或深度学习)对肝细胞癌进行基于图像的预后预测,提供客观、详细和全面的肿瘤表型分析 传统放射学方法的主观性和观察者间变异性限制了其准确性,人工智能方法仍处于发展阶段,需进一步验证 优化肝细胞癌患者的管理策略 肝细胞癌(HCC)患者 数字病理学 肝癌 放射组学、深度学习 NA 图像 NA
79 2025-04-23
Localization and Risk Stratification of Thyroid Nodules in Ultrasound Images Through Deep Learning
2024-06, Ultrasound in medicine & biology
研究论文 开发了一种结合深度学习和临床标准TI-RADS的系统,用于甲状腺结节的同步分割和风险分层 提出了一个结合TI-RADS和Mask R-CNN的集成系统,用于甲状腺结节的分割和风险分层 研究仅针对TI-RADS 4类甲状腺结节,样本量较小(304例) 开发一种集成系统,用于甲状腺结节的诊断和分割 甲状腺结节 计算机视觉 甲状腺疾病 超声成像 Mask R-CNN 图像 304例超声图像(来自两个独立站点)
80 2025-04-16
Application of deep learning radiomics in oral squamous cell carcinoma-Extracting more information from medical images using advanced feature analysis
2024-06, Journal of stomatology, oral and maxillofacial surgery
meta-analysis 本文通过系统综述和荟萃分析评估了深度学习放射组学在口腔鳞状细胞癌(OSCC)中的应用 结合深度学习算法与放射组学技术,提高了OSCC的诊断、鉴别诊断、疗效评估和预后预测的准确性 存在轻微的发表偏倚(P = 0.03),且当前阶段的深度学习放射组学技术仍有不足 评估深度学习放射组学在OSCC中的应用效果 口腔鳞状细胞癌(OSCC)的医学影像 digital pathology oral squamous cell carcinoma 深度学习放射组学 深度学习算法 医学影像 26项研究,共64,731张医学影像
回到顶部