本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1001 | 2024-08-07 |
Construction of deep learning-based convolutional neural network model for automatic detection of fluid hysteroscopic endometrial micropolyps in infertile women with chronic endometritis
2024-Jun, European journal of obstetrics, gynecology, and reproductive biology
DOI:10.1016/j.ejogrb.2024.04.026
PMID:38703449
|
研究论文 | 本研究构建了一个基于深度学习的卷积神经网络(CNN)模型,用于自动检测不孕症女性慢性子宫内膜炎患者的宫腔镜液体检查中的子宫内膜微息肉(EMiP)。 | 本研究首次开发了一种基于深度学习的CNN模型,用于自动检测与慢性子宫内膜炎相关的子宫内膜微息肉,提供了一种更少侵入性的诊断系统。 | NA | 开发一种更少侵入性的诊断系统,用于慢性子宫内膜炎的诊断。 | 不孕症女性慢性子宫内膜炎患者的宫腔镜液体检查中的子宫内膜微息肉。 | 机器学习 | 不孕症 | 卷积神经网络(CNN) | CNN | 图像 | 244名不孕症女性 |
1002 | 2024-08-07 |
Clinical outcome prediction with an automated EEG trend, Brain State of the Newborn, after perinatal asphyxia
2024-Jun, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
IF:3.7Q2
DOI:10.1016/j.clinph.2024.03.007
PMID:38583406
|
研究论文 | 本文评估了一种基于深度学习的全自动量化脑电图背景测量方法——新生儿脑状态(BSN),用于早期预测四岁时的临床结果。 | BSN提供了一种自动、客观且连续的脑活动测量方法,揭示了脑恢复和结果预测的动态特性。 | NA | 评估BSN在早期预测新生儿临床结果中的效用。 | 80名连续新生儿在出生后几天的脑电图监测数据。 | 机器学习 | NA | 深度学习 | NA | 脑电图数据 | 80名新生儿,总共5427小时的数据 |
1003 | 2024-08-07 |
Deepm6A-MT: A deep learning-based method for identifying RNA N6-methyladenosine sites in multiple tissues
2024-Jun, Methods (San Diego, Calif.)
DOI:10.1016/j.ymeth.2024.03.004
PMID:38485031
|
研究论文 | 本文提出了一种基于双向门控循环单元(Bi-GRU)和卷积神经网络(CNN)的改进方法Deepm6A-MT,用于预测RNA N6-甲基腺苷(m6A)修饰位点 | Deepm6A-MT通过两个输入通道提高了预测准确性和效率,其中一个通道使用嵌入层后接Bi-GRU和CNN,另一个通道使用单热编码、二核苷酸单热编码和核苷酸化学性质编码 | NA | 开发一种新的深度学习方法,以提高RNA m6A修饰位点的预测性能 | RNA m6A修饰位点 | 机器学习 | NA | 双向门控循环单元(Bi-GRU)和卷积神经网络(CNN) | Bi-GRU和CNN | RNA序列 | NA |
1004 | 2024-08-07 |
Deep learning methods in biomedical informatics
2024-Jun, Methods (San Diego, Calif.)
DOI:10.1016/j.ymeth.2024.04.002
PMID:38588786
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1005 | 2024-08-07 |
DEEP-EP: Identification of epigenetic protein by ensemble residual convolutional neural network for drug discovery
2024-Jun, Methods (San Diego, Calif.)
DOI:10.1016/j.ymeth.2024.04.004
PMID:38621436
|
研究论文 | 本文提出了一种基于深度学习的新模型,用于准确预测表观遗传蛋白(EP) | 引入了基于深度学习的模型,结合DDE编码和ERCNN模型,实现了对EP的精确预测 | NA | 旨在通过深度学习技术加速表观遗传蛋白的研究和药物发现 | 表观遗传蛋白(EP) | 机器学习 | NA | 深度学习 | ERCNN | 蛋白质序列 | 两个不同的数据集 |
1006 | 2024-08-07 |
Language model based on deep learning network for biomedical named entity recognition
2024-Jun, Methods (San Diego, Calif.)
DOI:10.1016/j.ymeth.2024.04.013
PMID:38641084
|
研究论文 | 本文提出了一种基于BiLSTM-CRF架构的多任务学习框架,结合语言模型用于生物医学命名实体识别,通过差异化编码和多任务学习方法提高实体识别性能 | 模型使用语言模型设计差异化编码,获取动态词向量以区分不同数据集中的词汇,并通过多任务学习方法共享不同类型实体的动态词向量 | 深度学习方法需要大量训练数据,数据不足会影响模型识别性能 | 解决生物医学命名实体识别任务中多义词和数据不足的问题 | 生物医学文本中的命名实体 | 自然语言处理 | NA | 深度学习 | BiLSTM-CRF | 文本 | 四个典型训练集 |
1007 | 2024-08-07 |
Quantifying abnormal emotion processing: A novel computational assessment method and application in schizophrenia
2024-Jun, Psychiatry research
IF:4.2Q1
DOI:10.1016/j.psychres.2024.115893
PMID:38657475
|
研究论文 | 本文介绍了一种使用深度学习技术从口语中快速评估情感处理的新方法,并在精神分裂症谱系障碍患者和健康对照组中进行了测试 | 提出了一种新的计算评估方法,利用深度学习从口语中估计情感处理,并引入了“情感对齐”(EA)这一新指标 | 需要进一步的验证工作来确认该方法的有效性和普遍性 | 开发一种自动化的方法来评估精神分裂症谱系障碍中的情感处理 | 精神分裂症谱系障碍患者和健康对照组的情感处理能力 | 机器学习 | 精神分裂症 | 深度学习 | NA | 口语 | 37名精神分裂症谱系障碍患者和51名健康对照组 |
1008 | 2024-08-07 |
A deep learning based multi-model approach for predicting drug-like chemical compound's toxicity
2024-Jun, Methods (San Diego, Calif.)
DOI:10.1016/j.ymeth.2024.04.020
PMID:38702021
|
研究论文 | 本研究开发了多种深度学习模型,用于评估不同类型的化合物毒性,包括急性毒性、致癌性、hERG心脏毒性、肝毒性和致突变性 | 利用图卷积网络(GCN)回归模型和多个GCN二元分类模型,针对不同类型的毒性进行预测,并集成了这些模型到一个虚拟筛选流程中,以识别潜在的低毒性药物候选物 | NA | 通过早期和准确的化合物毒性预测,减少药物开发过程中的成本和风险 | 化学化合物的毒性预测 | 机器学习 | NA | 图卷积网络(GCN) | GCN | 化合物数据 | 使用了批准的药物数据集来确定预测分数的适当阈值 |
1009 | 2024-08-07 |
Convolutional neural network allows amylose content prediction in yam (Dioscorea alata L.) flour using near infrared spectroscopy
2024-Jun, Journal of the science of food and agriculture
IF:3.3Q2
DOI:10.1002/jsfa.12825
PMID:37400424
|
研究论文 | 本研究利用近红外光谱技术结合卷积神经网络预测山药粉中的直链淀粉含量 | 首次使用卷积神经网络成功预测山药粉中的直链淀粉含量 | PLS方法未能成功预测直链淀粉含量 | 验证卷积神经网络在预测山药粉直链淀粉含量方面的可靠性和效率 | 山药粉中的直链淀粉含量 | 机器学习 | NA | 近红外光谱技术 | 卷积神经网络 | 光谱数据 | 186份山药粉样品 |
1010 | 2024-08-07 |
Financial impact of incorporating deep learning reconstruction into magnetic resonance imaging routine
2024-Jun, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2024.111434
PMID:38520806
|
研究论文 | 本文评估了将深度学习重建算法应用于磁共振成像常规流程对财务影响的实用性和经济可行性 | 本文首次详细分析了深度学习重建算法在磁共振成像中的应用,相较于传统扩容方法,如增加扫描仪或提高周末设备利用率,能显著降低运营成本 | NA | 研究深度学习重建算法在磁共振成像中的应用对医院运营成本的影响 | 深度学习重建算法在磁共振成像中的应用 | 机器学习 | NA | 深度学习重建算法 | 深度学习 | NA | 涉及五台磁共振成像扫描仪 |
1011 | 2024-08-07 |
Deep learning reconstruction for turbo spin echo to prospectively accelerate ankle MRI: A multi-reader study
2024-Jun, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2024.111451
PMID:38593573
|
研究论文 | 评估深度学习重建技术在加速踝关节磁共振成像中的应用效果 | 深度学习重建技术(DLR-TSE)在踝关节MRI中显著缩短了采集时间,同时提高了图像质量并减少了伪影和噪声 | NA | 评估深度学习重建技术在踝关节MRI中的应用效果 | 踝关节MRI的采集时间、图像质量和病变检测能力 | 计算机视觉 | NA | 深度学习重建技术(DLR-TSE) | NA | 图像 | 56名患者 |
1012 | 2024-08-07 |
Thin-slice elbow MRI with deep learning reconstruction: Superior diagnostic performance of elbow ligament pathologies
2024-Jun, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2024.111471
PMID:38636411
|
研究论文 | 本研究比较了1毫米切片厚度的MRI与深度学习重建(DLR)和3毫米切片厚度的MRI在肘部肌腱和韧带病理诊断中的图像质量和诊断性能 | 使用深度学习重建技术提高了1毫米切片厚度MRI在诊断肘部肌腱和韧带病理中的性能 | 研究为回顾性研究,且样本量较小 | 评估不同切片厚度和深度学习重建技术对肘部MRI图像质量和诊断性能的影响 | 肘部肌腱和韧带的病理 | 计算机视觉 | NA | MRI | 深度学习重建(DLR) | 图像 | 53名患者 |
1013 | 2024-08-07 |
Using deep learning to optimize the prostate MRI protocol by assessing the diagnostic efficacy of MRI sequences
2024-Jun, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2024.111470
PMID:38640822
|
研究论文 | 本研究利用深度学习技术评估和优化前列腺MRI协议的诊断效能 | 通过深度学习模型比较加速和完整MRI协议的诊断性能,发现省略特定DWI序列可以减少扫描时间而不影响诊断质量 | NA | 探索使用深度学习优化前列腺MRI协议的方法 | 前列腺MRI协议的诊断效能 | 机器学习 | 前列腺癌 | MRI | 深度学习模型 | 图像 | 840名患者 |
1014 | 2024-08-07 |
Deep learning-based radiomics of computed tomography angiography to predict adverse events after initial endovascular repair for acute uncomplicated Stanford type B aortic dissection
2024-Jun, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2024.111468
PMID:38648727
|
研究论文 | 本研究旨在构建一个结合深度学习衍生的计算机断层扫描血管造影(CTA)放射组学特征和临床生物标志物的预测模型,以预测急性未复杂化的斯坦福B型主动脉夹层(uTBAD)患者在接受初始胸主动脉腔内修复术(TEVAR)后的不良事件(AEs) | 本研究创新性地将深度学习基础的放射组学与临床指标相结合,用于预测急性uTBAD患者术后不良事件 | NA | 构建一个预测模型,结合CTA的放射组学特征和临床生物标志物,预测急性uTBAD患者术后不良事件 | 急性未复杂化的斯坦福B型主动脉夹层(uTBAD)患者 | 机器学习 | 心血管疾病 | 计算机断层扫描血管造影(CTA) | 三维深度卷积神经网络(CNN) | 图像 | 369名接受TEVAR治疗的急性uTBAD患者 |
1015 | 2024-08-07 |
State-of-the-RNArt: benchmarking current methods for RNA 3D structure prediction
2024-Jun, NAR genomics and bioinformatics
IF:4.0Q1
DOI:10.1093/nargab/lqae048
PMID:38745991
|
综述 | 本文综述了当前用于RNA 3D结构预测的计算方法,包括模板基和深度学习方法,并使用RNA-Puzzles数据集对九种方法进行了基准测试 | 介绍了深度学习方法在RNA 3D结构预测中的应用潜力 | 深度学习方法在RNA 3D结构预测中的应用仍然具有挑战性 | 评估和比较当前RNA 3D结构预测方法的性能 | RNA 3D结构预测的计算方法 | NA | NA | 深度学习 | NA | 数据集 | 九种方法 |
1016 | 2024-08-07 |
Single particle mass spectral signatures from on-road and non-road vehicle exhaust particles and their application in refined source apportionment using deep learning
2024-Jun-20, The Science of the total environment
DOI:10.1016/j.scitotenv.2024.172822
PMID:38688364
|
研究论文 | 本研究收集了道路和非道路车辆的颗粒物,并使用单颗粒气溶胶质谱法分析其化学成分,通过自适应共振理论神经网络对数据进行分组,建立移动源的质谱数据库,并开发了一种基于深度学习的气溶胶颗粒分类模型(DeepAerosolClassifier),用于源解析。 | 本研究开发了一种高度自动化的源解析模型,无需特征选择,实现了端到端的操作,适用于精细和在线的颗粒物源解析。 | NA | 更新源解析的源谱以满足当前需求,并开发一种基于深度学习的气溶胶颗粒分类模型。 | 道路和非道路车辆的颗粒物及其化学成分。 | 机器学习 | NA | 单颗粒气溶胶质谱法 | 深度学习模型 | 质谱数据 | NA |
1017 | 2024-08-07 |
Automatic offline-capable smartphone paper-based microfluidic device for efficient biomarker detection of Alzheimer's disease
2024-Jun-15, Analytica chimica acta
IF:5.7Q1
DOI:10.1016/j.aca.2024.342575
PMID:38740448
|
研究论文 | 本文介绍了一种基于智能手机的离线微流控纸基分析装置,用于阿尔茨海默病的早期筛查和生物标志物检测 | 该平台采用深度学习辅助的智能手机控制旋转结构,实现μPADs上的自动化c-ELISA,并集成了YOLOv5模型进行高精度检测 | NA | 开发一种低成本、高效率的离线智能手机平台,用于在资源有限地区进行阿尔茨海默病的快速检测 | 阿尔茨海默病及其生物标志物β-淀粉样蛋白1-42 | 机器学习 | 阿尔茨海默病 | c-ELISA | YOLOv5 | 图像 | 38个人工血浆样本(健康:19,不健康:19,N = 6) |
1018 | 2024-08-07 |
VENet: Variational energy network for gland segmentation of pathological images and early gastric cancer diagnosis of whole slide images
2024-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108178
PMID:38652995
|
研究论文 | 本文提出了一种名为VENet的变分能量网络,用于病理图像中的腺体分割和全切片图像中的早期胃癌诊断 | VENet结合了变分数学模型和深度学习方法的数据适应性,有效平衡了边界和区域分割,并能在大尺寸全切片图像中可靠地分割和分类腺体 | NA | 解决腺体分割中边界和区域分割结果不理想的问题,并辅助早期胃癌诊断 | 病理图像中的腺体分割和全切片图像中的早期胃癌诊断 | 数字病理学 | 胃癌 | 深度学习 | 变分能量网络(VENet) | 图像 | 在2015 MICCAI腺体分割挑战(GlaS)数据集、结直肠腺癌腺体(CRAG)数据集和南方医院自收集数据集上进行了评估,包括69张全切片图像(WSIs) |
1019 | 2024-08-07 |
RegWSI: Whole slide image registration using combined deep feature- and intensity-based methods: Winner of the ACROBAT 2023 challenge
2024-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108187
PMID:38657383
|
research paper | 本文提出了一种两步混合方法,用于不同染色全幻灯片图像(WSI)的自动配准,该方法结合了深度学习和特征基于的初始对齐算法以及基于强度的非刚性配准 | 该方法无需对特定数据集进行微调,可直接用于任何所需的组织类型和染色,并且在ACROBAT 2023挑战赛中获得第一名 | NA | 提高通过融合不同可见结构产生的互补信息来进行诊断和预后的自动配准 | 不同染色的全幻灯片图像(WSI)的自动配准 | digital pathology | NA | 深度学习 | NA | image | 使用了三个公开数据集进行评估:Automatic Nonrigid Histological Image Registration Dataset (ANHIR)、Automatic Registration of Breast Cancer Tissue Dataset (ACROBAT) 和 Hybrid Restained and Consecutive Histological Serial Sections Dataset (HyReCo) |
1020 | 2024-08-07 |
Brain tumor detection using proper orthogonal decomposition integrated with deep learning networks
2024-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108167
PMID:38669717
|
研究论文 | 本研究通过将正交分解(POD)与卷积神经网络(CNN)结合,用于从磁共振成像(MRI)扫描的2D图像中有效识别脑肿瘤 | 首次将POD与CNN集成用于脑肿瘤检测,特别是在使用有限MRI扫描数据的情况下 | NA | 开发一种自动可靠的技术,以帮助医疗从业者及时诊断患者 | 脑肿瘤的自动检测 | 计算机视觉 | 脑肿瘤 | 磁共振成像(MRI) | 卷积神经网络(CNN) | 图像 | NA |