深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202406-202406] [清除筛选条件]
当前共找到 1031 篇文献,本页显示第 101 - 120 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
101 2025-03-20
Deep Learning Image Reconstruction for Transcatheter Aortic Valve Implantation Planning: Image Quality, Diagnostic Performance, Contrast volume and Radiation Dose Assessment
2024-06, Academic radiology IF:3.8Q1
研究论文 本研究评估了在经导管主动脉瓣植入(TAVI)规划CT中使用高强度深度学习图像重建(DLIR-H)对图像质量、对比剂用量、辐射剂量及诊断性能的影响 首次在TAVI规划CT中应用DLIR-H技术,并系统评估其在降低辐射剂量、对比剂用量及提升图像质量方面的潜力 研究样本量相对较小(128例患者),且仅在一家医疗机构进行,可能影响结果的普遍性 评估DLIR-H在TAVI规划CT中的应用效果,包括图像质量、辐射剂量、对比剂用量及诊断性能 128例接受TAVI规划CT的患者 数字病理学 心血管疾病 深度学习图像重建(DLIR-H) NA CT图像 128例患者
102 2025-03-20
CT-Based Super-Resolution Deep Learning Models with Attention Mechanisms for Predicting Spread Through Air Spaces of Solid or Part-Solid Lung Adenocarcinoma
2024-06, Academic radiology IF:3.8Q1
研究论文 本研究开发了一种基于CT超分辨率和注意力机制的深度学习模型,用于预测实性或部分实性肺腺癌的空气传播扩散状态 使用SE-ResNet50模型结合CT超分辨率技术,显著提高了预测肺腺癌空气传播扩散状态的准确性 研究为回顾性研究,样本量相对有限,且仅来自两个医疗中心 预测肺腺癌的空气传播扩散状态,以帮助选择合适的手术方法 602名被诊断为肺腺癌的患者 计算机视觉 肺癌 CT超分辨率 SE-ResNet50, ResNet50 CT图像 602名患者(中心1:512名,中心2:90名)
103 2025-03-20
CEMRI-Based Quantification of Intratumoral Heterogeneity for Predicting Aggressive Characteristics of Hepatocellular Carcinoma Using Habitat Analysis: Comparison and Combination of Deep Learning
2024-06, Academic radiology IF:3.8Q1
研究论文 本研究探索了基于栖息地分析的肿瘤内异质性模型和基于对比增强磁共振成像的深度学习模型,并验证了其在预测肝细胞癌微血管侵犯和病理分化中的效率 结合了肿瘤内异质性模型和深度学习模型,设计了一个融合模型,用于预测肝细胞癌的微血管侵犯和低分化 研究为回顾性研究,样本量相对较小 预测肝细胞癌的微血管侵犯和病理分化 肝细胞癌患者 数字病理学 肝细胞癌 对比增强磁共振成像 深度学习模型 图像 265名患者的277个肝细胞癌样本
104 2025-03-20
Deep Learning Radiomics Nomogram Based on Magnetic Resonance Imaging for Differentiating Type I/II Epithelial Ovarian Cancer
2024-06, Academic radiology IF:3.8Q1
研究论文 本研究开发并验证了一种基于T2加权磁共振成像(MRI)的深度学习放射组学列线图(DLRN),用于区分I型和II型上皮性卵巢癌(EOC) 首次结合深度学习特征、放射组学特征和独立临床预测因子构建DLRN,用于区分I型和II型EOC 研究样本来自五个中心,可能存在数据异质性 开发并验证一种基于MRI的DLRN,用于区分I型和II型EOC I型和II型上皮性卵巢癌(EOC)患者 数字病理学 卵巢癌 T2加权磁共振成像(MRI) 深度学习模型 图像 437名患者,分为训练集(271人)、内部验证集(68人)和外部验证集(98人)
105 2025-03-20
Contrast-Enhanced CT-Based Deep Learning Radiomics Nomogram for the Survival Prediction in Gallbladder Cancer
2024-06, Academic radiology IF:3.8Q1
研究论文 本研究提出了一种基于增强CT图像的深度学习放射组学列线图模型,用于预测胆囊癌患者手术切除后的生存率 结合临床特征、放射组学和深度学习技术,构建了一个多模态模型,用于胆囊癌患者的生存预测 研究样本量较小(167例),且为回顾性研究,可能存在选择偏差 开发一种准确的预后模型,以指导胆囊癌患者的治疗策略 胆囊癌患者 数字病理学 胆囊癌 增强CT成像 DenseNet121 图像 167例胆囊癌患者
106 2025-03-20
Fusion Radiomics-Based Prediction of Response to Neoadjuvant Chemotherapy for Osteosarcoma
2024-06, Academic radiology IF:3.8Q1
研究论文 本研究旨在开发一种基于深度学习的放射组学模型,利用术前MR图像准确预测骨肉瘤患者对新辅助化疗的反应 结合深度学习与放射组学技术,开发了一种新的预测模型,能够高精度预测骨肉瘤患者对新辅助化疗的反应 样本量相对较小,仅106名患者,且仅使用了T2加权成像和对比增强T1加权成像两种MR图像 开发一种深度学习放射组学模型,用于预测骨肉瘤患者对新辅助化疗的反应 106名病理确诊为骨肉瘤的患者 数字病理 骨肉瘤 深度学习放射组学 深度学习模型 MR图像 106名骨肉瘤患者
107 2025-03-20
Anti-motion Ultrafast T2 Mapping Technique for Quantitative Detection of the Normal-Appearing Corticospinal Tract Changes in Subacute-Chronic Stroke Patients with Distal Lesions
2024-06, Academic radiology IF:3.8Q1
研究论文 本研究利用多重叠回波分离(MOLED)定量技术,克服中风患者在磁共振成像(MRI)检查中的不自主运动问题,并检测亚急性-慢性中风患者正常外观皮质脊髓束(NA-CST)的微观结构变化 采用MOLED技术进行定量成像,解决了中风患者因不自主运动导致的成像难题,并首次通过T2映射检测NA-CST的微观结构变化 研究样本量有限,仅包括79名患者,且未探讨MOLED技术在其他类型中风或神经系统疾病中的应用 克服中风患者MRI检查中的运动问题,并定量检测NA-CST的微观结构变化 亚急性-慢性中风患者 数字病理学 中风 MOLED技术 深度学习网络 MRI图像 79名患者
108 2025-03-20
Habitat Radiomics Based on MRI for Predicting Platinum Resistance in Patients with High-Grade Serous Ovarian Carcinoma: A Multicenter Study
2024-06, Academic radiology IF:3.8Q1
研究论文 本研究探讨了基于MRI的生境放射组学在预测高级别浆液性卵巢癌患者对铂类化疗反应中的可行性,并与传统放射组学和深度学习模型进行了比较 首次将生境放射组学应用于预测高级别浆液性卵巢癌患者的铂类化疗反应,并开发了一个结合生境特征和临床独立预测因子的列线图模型 研究为回顾性研究,可能存在选择偏倚,且样本量相对有限 预测高级别浆液性卵巢癌患者对铂类化疗的反应 高级别浆液性卵巢癌患者 数字病理学 卵巢癌 MRI K-means聚类、放射组学模型、深度学习模型 图像 394名符合条件的患者
109 2025-03-20
Influence of Deep Learning Based Image Reconstruction on Quantitative Results of Coronary Artery Calcium Scoring
2024-06, Academic radiology IF:3.8Q1
研究论文 本文评估了基于深度学习的图像重建(DLIR)对冠状动脉钙化评分(CACS)定量结果的影响,并探讨了DLIR在CACS中减少辐射剂量的潜力 首次系统评估了DLIR在CACS中的应用,并与传统的滤波反投影(FBP)和自适应统计迭代重建(ASiR-V)进行了比较 研究样本量较小(100名患者),且为回顾性研究,可能影响结果的普遍性 评估DLIR对CACS定量结果的影响及其在减少辐射剂量方面的潜力 100名连续患者和一个人体模型 医学影像 心血管疾病 深度学习图像重建(DLIR) NA 图像 100名患者(平均年龄62±10岁,40%女性)和一个人体模型
110 2025-03-20
Assertion Detection in Clinical Natural Language Processing using Large Language Models
2024-Jun, Proceedings. IEEE International Conference on Healthcare Informatics
研究论文 本研究旨在解决从临床笔记中提取医学概念时的断言检测任务,这是临床自然语言处理(NLP)中的关键过程 引入了一种利用预训练在大量医学数据上的大型语言模型(LLMs)进行断言检测的新方法,并结合了先进的推理技术如Tree of Thought (ToT)、Chain of Thought (CoT)和Self-Consistency (SC),并通过Low-Rank Adaptation (LoRA)微调进一步优化 传统方法需要大量手动工作来创建模式,并且往往忽略较少见的断言类型,导致对上下文的理解不完整 提高临床NLP中医学概念断言检测的准确性和效率 临床笔记中的医学概念 自然语言处理 NA 大型语言模型(LLMs) LLMs 文本 i2b2 2010断言数据集和本地睡眠概念提取数据集
111 2025-03-16
Epiretinal membranes in patients with uveitis: an update on the current state of management
2024-Jun-28, International ophthalmology IF:1.4Q3
review 本文综述了关于葡萄膜炎性视网膜前膜(ERM)的临床特征、诊断方法和治疗策略的最新知识 总结了ERM的多样性和复杂性,并探讨了OCT生物标志物、深度学习和手术进展对改善治疗效果的潜力 缺乏统一的疾病模型,手术方法存在争议,需要进一步研究以优化治疗策略 总结葡萄膜炎性视网膜前膜的临床特征、诊断方法和治疗策略 葡萄膜炎性视网膜前膜(ERM)患者 NA 葡萄膜炎 OCT(光学相干断层扫描) 深度学习 医学影像 NA
112 2025-03-14
Automated vessel-specific coronary artery calcification quantification with deep learning in a large multi-centre registry
2024-Jun-28, European heart journal. Cardiovascular Imaging
研究论文 本文评估了使用深度学习自动分析血管特异性冠状动脉钙化(CAC)的准确性和预后意义,基于心电图门控和衰减校正CT的大规模多中心注册数据 首次在大规模多中心注册数据中应用深度学习模型进行血管特异性CAC分析,并评估其预后价值 研究依赖于CT图像质量,且未探讨其他可能影响预后的因素 评估深度学习在血管特异性CAC分析中的准确性和预后意义 冠状动脉钙化(CAC) 数字病理 心血管疾病 深度学习 深度学习模型 CT图像 3000例门控CT用于训练,2094例门控CT和5969例非门控AC CT用于测试
113 2025-03-13
Hybrid deep learning and optimal graph search method for optical coherence tomography layer segmentation in diseases affecting the optic nerve
2024-Jun-01, Biomedical optics express IF:2.9Q2
研究论文 本文提出了一种结合深度学习和3D图搜索的混合方法Deep LOGISMOS,用于提高光学相干断层扫描(OCT)图像中视网膜层分割的准确性、鲁棒性和泛化能力 Deep LOGISMOS结合了深度学习和3D图搜索的优势,克服了现有算法在病理导致视网膜层拓扑不规则时的局限性 NA 提高视网膜层分割的准确性,以辅助视神经疾病的诊断和治疗管理 OCT图像中的视网膜层 计算机视觉 视神经疾病 光学相干断层扫描(OCT) Deep LOGISMOS(结合深度学习和3D图搜索) 图像 124个OCT体积(31名非动脉性前部缺血性视神经病变患者)、40个OCT体积(20名NAION患者)、29个OCT体积(29名青光眼患者)、35个OCT体积(21名多发性硬化症患者和14名对照者)、155个OCT体积(15名青光眼患者)
114 2025-03-11
Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning
2024-Jun-28, Research square
研究论文 本文开发了一种基于无监督深度学习的模型ICoN,用于从分子动力学模拟数据中学习蛋白质构象变化的物理原理,并通过插值数据点快速识别具有复杂和大规模侧链和骨架排列的新合成构象 提出了ICoN模型,能够从分子动力学模拟数据中学习蛋白质构象变化的物理原理,并生成新的合成构象,揭示了实验发现中未包含的重要原子细节 方法的普适性依赖于可用训练数据的质量和数量,且需要进一步的实验验证来确认生成构象的生物学相关性 研究蛋白质构象集合,特别是高度动态蛋白质的构象变化,以理解其功能调控和疾病相关聚集 高度动态的淀粉样β(Aβ42)单体 机器学习 NA 分子动力学(MD)模拟 ICoN(Internal Coordinate Net) 分子动力学模拟数据 NA
115 2025-03-10
Data-driven fine-grained region discovery in the mouse brain with transformers
2024-Jun-13, bioRxiv : the preprint server for biology
研究论文 本文开发了一种无监督训练方案和基于transformer的深度学习架构,用于利用空间转录组学数据检测小鼠全脑的空间区域 提出了一种新的transformer深度学习架构,能够从粗到细粒度地识别小鼠大脑中的空间区域,并发现了一些以前未分类的亚区域 NA 研究小鼠大脑的空间组织 小鼠大脑 数字病理学 NA 空间转录组学 transformer 空间转录组学数据 多个小鼠的全脑数据
116 2025-03-09
The human hypothalamus coordinates switching between different survival actions
2024-Jun, PLoS biology IF:7.8Q1
研究论文 本研究探讨了人类下丘脑在生存行为切换中的作用,通过虚拟捕食者和猎物的实验范式,结合深度学习分割和优化的成像序列,揭示了人类下丘脑在生存行为切换中的关键角色 首次识别了人类下丘脑在生存行为切换中的作用,并揭示了其在行为切换后动作组织中的角色 研究依赖于虚拟环境中的行为模拟,可能无法完全反映真实世界中的生存行为 探讨人类下丘脑在生存行为切换中的作用 人类下丘脑及其在生存行为切换中的功能 神经科学 NA 深度学习分割、优化的成像序列、多体素模式分析(MVPA)、多体素连接分析、基于模型的fMRI分析 计算模型 fMRI数据 两次实验中的志愿者
117 2025-03-06
PTransIPs: Identification of Phosphorylation Sites Enhanced by Protein PLM Embeddings
2024-06, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本研究开发了一个名为PTransIPs的深度学习框架,用于识别磷酸化位点,该框架在独立测试中表现优于现有最先进方法 PTransIPs首次将蛋白质预训练语言模型(PLM)嵌入应用于此任务,结合了Transformer架构和卷积神经网络,并采用了TIM损失函数进行优化 NA 开发一个深度学习框架以准确识别磷酸化位点,从而揭示细胞内的分子机制和病毒感染过程中的关键点 磷酸化位点 生物信息学 NA 深度学习 Transformer, CNN 蛋白质序列和结构数据 NA
118 2025-03-06
Preliminary Results: Comparison of Convolutional Neural Network Architectures as an Auxiliary Clinical Tool Applied to Screening Mammography in Mexican Women
2024-Jun, Journal of medical and biological engineering IF:1.6Q4
研究论文 本研究开发了一种新型卷积神经网络(CNN)用于乳腺X光片的良恶性分类,并与使用迁移学习的预训练CNN模型进行比较 开发了一种新型CNN模型,并在墨西哥女性乳腺X光片数据集上进行了训练和验证,填补了该领域的数据和工具空白 研究样本量相对较小,且仅使用了两个数据库的数据 开发并验证一种新型CNN模型,用于乳腺X光片的良恶性分类 乳腺X光片 计算机视觉 乳腺癌 卷积神经网络(CNN) CNN, DenseNet121, MobileNetV2, ResNet50, VGG16 图像 1,070张乳腺X光片(来自235名墨西哥患者)和MIAS数据库中的乳腺X光片
119 2025-03-06
From Basic to Extra Features: Hypergraph Transformer Pretrain-then-Finetuning for Balanced Clinical Predictions on EHR
2024-Jun, Proceedings of machine learning research
PMID:40041452
研究论文 本文提出了一种名为HTP-Star的模型,利用超图结构和预训练-微调框架来建模电子健康记录(EHR)数据,并设计了两种技术以增强模型在微调过程中的鲁棒性 HTP-Star模型通过超图结构和预训练-微调框架,实现了对EHR数据的建模,并能够无缝整合额外特征,同时在微调过程中增强了模型的鲁棒性 未明确提及具体限制 研究目的是通过深度学习模型改进对电子健康记录(EHR)数据的处理,以实现更平衡的临床预测 电子健康记录(EHR)数据 机器学习 NA 超图结构、预训练-微调框架 HTP-Star 电子健康记录(EHR)数据 两个真实的EHR数据集
120 2025-03-05
Evaluation of deep learning algorithms in detecting moyamoya disease: a systematic review and single-arm meta-analysis
2024-Jun-29, Neurosurgical review IF:2.5Q1
系统综述与单臂荟萃分析 本研究评估了深度学习算法在诊断烟雾病(MMD)中的效果,通过分析敏感性、特异性和曲线下面积(AUC)与专家共识进行比较 首次系统评估深度学习算法在烟雾病诊断中的应用,并进行了单臂荟萃分析 仅包括英文文献,排除了使用传统机器学习方法的研究 评估深度学习算法在烟雾病诊断中的效果 烟雾病(MMD)患者 计算机视觉 烟雾病 深度学习 深度学习模型 图像 4,416名患者,其中1,358名患有烟雾病
回到顶部