深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202407-202407] [清除筛选条件]
当前共找到 1309 篇文献,本页显示第 21 - 40 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
21 2025-07-03
Improving quantitative MRI using self-supervised deep learning with model reinforcement: Demonstration for rapid T1 mapping
2024-Jul, Magnetic resonance in medicine IF:3.0Q2
research paper 提出了一种新型的自监督学习框架RELAX-MORE,用于加速定量MRI重建 采用模型强化的自监督学习方法,无需大量训练数据,可在单被试数据上进行训练 NA 提高定量MRI的重建速度和准确性 大脑、膝盖和幻影数据 machine learning NA 定量MRI,自监督学习 深度学习框架 MRI图像 单被试数据
22 2025-07-01
Toward calibration-free motor imagery brain-computer interfaces: a VGG-based convolutional neural network and WGAN approach
2024-07-31, Journal of neural engineering IF:3.7Q2
research paper 本研究提出了一种基于VGG卷积神经网络和WGAN的无校准运动想象脑机接口方法,用于跨受试者EEG分类 采用WGAN生成合成频谱图像进行数据增强,结合改进的VGG-CNN分类器,实现了无需目标受试者校准数据的跨受试者分类 研究仅使用了公开竞赛数据集,未在实际临床环境中验证 开发无需校准的运动想象脑机接口系统 运动想象EEG信号 脑机接口 NA EEG信号处理 VGG-CNN, WGAN EEG频谱图像 BCI竞赛IV-2B、IV-2A和IV-1基准数据集(具体数量未说明)
23 2025-07-01
SQI-DOANet: electroencephalogram-based deep neural network for estimating signal quality index and depth of anaesthesia
2024-07-30, Journal of neural engineering IF:3.7Q2
研究论文 提出了一种基于脑电图(EEG)的深度神经网络SQI-DOANet,用于估计信号质量指数(SQI)和麻醉深度(DOA) 结合了信号质量评估网络(SQINet)和麻醉深度分析网络(DOANet),采用双注意力模块融合多通道多尺度信息,并使用门控多层感知器模块提取时序信息 未明确说明模型在实时监测场景下的表现及计算效率 开发可靠的麻醉深度监测方法 手术中的脑电图信号 机器学习 NA 深度学习 CNN+注意力机制+MLP EEG信号 大型VitalDB数据库(具体数量未说明)
24 2025-07-01
Neural activity shaping in visual prostheses with deep learning
2024-07-25, Journal of neural engineering IF:3.7Q2
研究论文 本文提出了一种基于深度学习的神经活动塑造方法,用于改善视网膜假体的视觉感知 使用人工神经网络(ANNs)进行模型无关的神经活动塑造,相比传统方法计算效率更高且不限于特定视网膜模型 方法尚未在实际临床环境中验证 提高视网膜假体的空间分辨率和视觉感知质量 视网膜假体使用者的神经活动模式 计算机视觉 视网膜疾病 深度学习 ANNs(人工神经网络) 图像数据 NA
25 2025-06-24
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases
2024-Jul-16, The British journal of dermatology
research paper 本研究开发了一种深度学习方法来自动分类自身免疫性大疱性皮肤病(AIBDs)的直接免疫荧光(DIF)模式,以提高诊断准确性和效率 首次将深度学习技术应用于自身免疫性大疱性皮肤病的DIF图像自动分类,特别是针对细胞间模式(ICP)和线性模式(LP) 样本量相对较小(训练集436张,测试集93张),且存在类别不平衡问题 开发AI算法以自动分类AIBDs的DIF模式,提高诊断准确性和疾病管理效率 自身免疫性大疱性皮肤病(AIBDs)患者的皮肤活检免疫荧光图像 digital pathology autoimmune bullous skin diseases direct immunofluorescence (DIF) CNNs, Swin Transformer image 训练集436张图像,测试集93张图像
26 2025-06-18
Stepwise Transfer Learning for Expert-level Pediatric Brain Tumor MRI Segmentation in a Limited Data Scenario
2024-07, Radiology. Artificial intelligence
research paper 该研究开发并评估了一种使用逐步迁移学习的深度学习模型,用于在有限数据场景下进行儿科脑肿瘤MRI分割 采用逐步迁移学习方法在有限数据场景下优化模型性能,实现了专家级别的自动分割 研究依赖于回顾性数据,且样本量相对有限 开发并验证一种高效的儿科脑肿瘤MRI自动分割模型 儿科低级别胶质瘤的MRI图像 digital pathology pediatric brain tumors MRI deep learning neural networks image 284例儿科脑肿瘤患者的T2加权MRI图像(184例来自国家脑肿瘤联盟,100例来自儿科癌症中心)
27 2025-06-18
Impact of Transfer Learning Using Local Data on Performance of a Deep Learning Model for Screening Mammography
2024-07, Radiology. Artificial intelligence
研究论文 评估在澳大利亚本地数据集上使用迁移学习对纽约大学开发的乳腺X线摄影深度学习系统性能的影响 研究了深度学习模型在不同地理数据集上的泛化能力和可复制性,并探讨了迁移学习对模型性能的提升作用 研究为回顾性研究,且所有参与者均为女性,可能限制结果的普遍适用性 评估深度学习模型在乳腺X线摄影筛查中的泛化能力和性能 乳腺X线摄影图像 数字病理 乳腺癌 深度学习 CNN 图像 959名女性参与者(平均年龄62.5岁±8.5)
28 2025-06-18
Improving Automated Hemorrhage Detection at Sparse-View CT via U-Net-based Artifact Reduction
2024-07, Radiology. Artificial intelligence
research paper 本研究探讨了基于深度学习的伪影减少技术在稀疏视图颅脑CT扫描中的应用及其对自动出血检测的影响 使用U-Net进行伪影减少,显著提高了稀疏视图颅脑CT扫描中的自动出血检测性能 研究为回顾性研究,且仅基于模拟的稀疏视图CT数据 提高稀疏视图颅脑CT扫描中自动出血检测的准确性 稀疏视图颅脑CT扫描图像 digital pathology hemorrhage CT扫描 U-Net, EfficientNet-B2 image 3000名患者的模拟稀疏视图CT数据,以及17545名患者的全视图CT数据
29 2025-06-18
Deep Learning for Breast Cancer Risk Prediction: Application to a Large Representative UK Screening Cohort
2024-07, Radiology. Artificial intelligence
研究论文 开发了一种基于深度学习的AI工具,用于从当前阴性筛查乳腺X光检查中预测未来乳腺癌风险,并在英国国家卫生服务乳腺筛查计划的数据上进行了评估 利用深度学习技术从阴性筛查乳腺X光检查中预测未来乳腺癌风险,并在大规模代表性英国筛查队列中验证模型性能 研究仅基于英国三个站点的数据,可能无法完全代表其他地区或人群 开发并验证一种能够预测未来乳腺癌风险的AI工具 50-70岁无癌症女性患者的筛查乳腺X光检查 数字病理学 乳腺癌 深度学习 AI深度学习模型 乳腺X光图像 5264风险阳性和191488风险阴性检查,包括89,285训练集、2,106验证集和39,351测试集
30 2024-08-07
Vision Transformer-based Deep Learning Models Accelerate Further Research for Predicting Neurosurgical Intervention
2024-07, Radiology. Artificial intelligence
NA NA NA NA NA NA NA NA NA NA NA NA
31 2025-06-16
Association of retinal image-based, deep learning cardiac BioAge with telomere length and cardiovascular biomarkers
2024-Jul-01, Optometry and vision science : official publication of the American Academy of Optometry IF:1.6Q3
research paper 该研究探讨了基于视网膜图像的深度学习心脏生物年龄模型与端粒长度及心血管生物标志物的关联 利用视网膜图像和深度学习模型非侵入性地预测心血管疾病风险,并验证其与端粒长度缩短的相关性 研究为横断面设计,无法确定因果关系,且样本仅来自UK Biobank数据库 验证深度学习心脏生物年龄模型与传统心血管风险标志物及端粒长度的关联 UK Biobank中具有端粒长度数据的个体 digital pathology cardiovascular disease deep learning DL cardiac BioAge model retinal images UK Biobank队列中具有端粒长度数据的个体(具体数量未明确说明)
32 2025-06-15
A practical machine learning approach for predicting the quality of 3D (bio)printed scaffolds
2024-Jul-25, Biofabrication IF:8.2Q1
research paper 本研究提出了一种实用的机器学习方法,用于预测3D(生物)打印支架的质量 提供了最全面的开源数据集,并应用了从无监督到监督学习的多种AI技术,开发了一个具有六层隐藏层的全连接神经网络 AI在组织工程中的应用常因缺乏全面可靠的数据而受到阻碍 预测3D(生物)打印支架的质量 3D(生物)打印支架 machine learning NA AI, machine learning, deep learning XGBoost, Gradient Boosting, Extra Trees Classifier, Random Forest Classifier, LightGBM, fully connected neural network dataset on 3D-printed scaffolds 1171 scaffolds, 60 biomaterials, 49 cell lines
33 2025-06-15
A hybrid model for the detection of retinal disorders using artificial intelligence techniques
2024-Jul-10, Biomedical physics & engineering express IF:1.3Q3
research paper 该研究提出了一种结合机器学习和深度学习技术的混合模型,用于自动分类视网膜疾病 提出了一种新的框架,结合了多种分类器(SVM、K-NN、DT、EM)和InceptionV3 CNN特征提取器,实现了高精度的视网膜疾病分类 未提及模型在临床环境中的实际应用效果或泛化能力 开发一种自动化的视网膜疾病分类方法 视网膜疾病(脉络膜新生血管、糖尿病性黄斑水肿、玻璃膜疣)和正常病例 computer vision 视网膜疾病 OCT(光学相干断层扫描) SVM、K-NN、DT、EM、InceptionV3 CNN image 18000张OCT图像
34 2025-06-14
Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review
2024-07, Radiology. Artificial intelligence
系统性综述 本研究通过系统性综述探讨了深度学习在前列腺MRI分割中的准确性和鲁棒性,并与专业放射科医生进行了比较 首次系统性评估深度学习在前列腺MRI分割中的表现,并比较不同MRI厂商、前列腺区域和测试方法下的性能 仅纳入截至2022年7月31日前的英文文献,可能遗漏最新研究成果 评估深度学习在前列腺MRI分割中的准确性和鲁棒性 前列腺MRI图像 数字病理学 前列腺癌 MRI 深度学习算法 医学影像 48项研究(来自691篇初步筛选文献)
35 2025-06-14
Validation of de novo designed water-soluble and transmembrane β-barrels by in silico folding and melting
2024-Jul, Protein science : a publication of the Protein Society IF:4.5Q1
研究论文 通过计算机模拟折叠和熔解验证了从头设计的水溶性和跨膜β桶蛋白 揭示了AlphaFold2和ESMFold在不同任务中的优势,并引入了一种基于预测增量扰动的'计算机模拟熔解'新方法 缺乏高质量预测模型与实验成功机会之间关系的正式证据 验证和比较深度学习结构预测算法在蛋白质设计中的应用 从头设计的水溶性和跨膜β桶蛋白 计算生物学 NA 深度学习结构预测算法(AlphaFold2, ESMFold) AlphaFold2, ESMFold 蛋白质序列和结构数据 NA
36 2025-06-10
Combining Artificial Intelligence and Simplified Image Processing for the Automatic Detection of Mycobacterium tuberculosis in Acid-fast Stain : A Cross-institute Training and Validation Study
2024-Jul-01, The American journal of surgical pathology
研究论文 本文介绍了一种结合人工智能和简化图像处理技术的自动化结核分枝杆菌检测平台 采用改进的EfficientNet模型和图像处理技术,显著提高了结核分枝杆菌的检测准确率和效率 研究仅在两家医院的数据上进行验证,可能需要更多样化的数据集进一步验证 开发高效的结核分枝杆菌自动检测方法以提高病理诊断效率 抗酸染色中的结核分枝杆菌 数字病理学 结核病 深度学习、图像处理 改进的EfficientNet 图像 来自2家医院的全切片图像
37 2025-06-07
Designing Clinical MRI for Enhanced Workflow and Value
2024-07, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
research paper 探讨如何通过优化MRI工作流程和采用数字工具提升临床MRI的价值和效率 提出利用数字工具和深度学习加速图像重建方法优化MRI工作流程,并强调患者准备流程的重新配置和实时信息工具的应用 未提及具体实施这些优化策略的临床效果数据或案例研究 优化MRI工作流程,提升患者价值和医疗效率 MRI成像过程及其相关技术和人员 数字病理 NA 深度学习加速图像重建方法 NA 图像 NA
38 2025-06-07
Global and Regional Deep Learning Models for Multiple Sclerosis Stratification From MRI
2024-07, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
research paper 本研究比较了全脑输入采样策略和区域/特定组织策略,以基于残疾水平对多发性硬化症患者进行分层 首次比较了全脑与区域输入策略在MRI深度学习模型中对多发性硬化症患者残疾水平分层的效果 研究仅使用了单一供应商的MRI设备数据,可能影响模型的泛化能力 比较不同MRI输入策略对多发性硬化症患者残疾水平分层的效果 多发性硬化症患者的脑部MRI扫描数据 digital pathology multiple sclerosis MRI 3D-CNN image 319名MS患者(382次脑部MRI扫描)的内部数据集和440名来自多中心的MS患者外部验证队列
39 2025-06-07
Automated Breast Density Assessment in MRI Using Deep Learning and Radiomics: Strategies for Reducing Inter-Observer Variability
2024-07, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
research paper 该研究探讨了利用深度学习和放射组学减少乳腺密度评估中观察者间变异性的可行性 结合深度学习和放射组学模型,通过AI辅助解释显著减少了乳腺密度评估的观察者间变异性 研究为回顾性设计,可能限制了结果的普遍适用性 评估人工智能辅助解释在减少乳腺密度评估观察者间变异性中的效果 621名无乳腺假体或重建手术的患者 digital pathology breast cancer deep learning, radiomics CNN MRI images 621名患者(训练集377名,验证集98名,独立测试集146名)
40 2025-06-07
Magnetic Resonance Deep Learning Radiomic Model Based on Distinct Metastatic Vascular Patterns for Evaluating Recurrence-Free Survival in Hepatocellular Carcinoma
2024-07, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
research paper 该研究旨在构建并比较基于VETC-MVI的临床、放射组学和深度学习模型,以评估肝细胞癌患者的无复发生存期 首次基于VETC和MVI两种转移性血管模式构建深度学习放射组学模型,用于评估HCC患者的无复发生存期 回顾性研究设计,样本量相对有限(398例患者) 评估肝细胞癌患者的无复发生存期 肝细胞癌患者 digital pathology liver cancer MRI(T1WI SPGR, T2WI FSE, 增强动脉期和延迟期成像) deep learning model medical imaging 398例HCC患者(训练队列358例,测试队列40例)
回到顶部