本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 61 | 2025-10-06 |
Improving quantitative MRI using self-supervised deep learning with model reinforcement: Demonstration for rapid T1 mapping
2024-Jul, Magnetic resonance in medicine
IF:3.0Q2
DOI:10.1002/mrm.30045
PMID:38342980
|
研究论文 | 提出一种名为RELAX-MORE的新型自监督学习框架,通过模型增强实现加速定量MRI重建 | 开发了无需参考数据的潜在图提取与模型增强方法,可将基于模型的迭代重建算法展开为深度学习框架 | NA | 改进定量MRI技术,实现快速MR参数映射 | 脑部、膝部和体模数据 | 医学影像分析 | NA | 定量MRI, T1映射 | 深度学习 | MRI图像 | 单受试者数据 | NA | NA | 效率, 准确性, 鲁棒性, 泛化性 | NA |
| 62 | 2025-10-06 |
Toward calibration-free motor imagery brain-computer interfaces: a VGG-based convolutional neural network and WGAN approach
2024-07-31, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/ad6598
PMID:39029497
|
研究论文 | 提出一种基于VGG卷积神经网络和Wasserstein生成对抗网络的免校准运动想象脑机接口方法 | 使用WGAN生成合成频谱图像进行数据增强,结合改进的VGG-CNN分类器,实现无需目标对象校准数据的跨被试分类 | 仅使用公开基准数据集进行验证,未在实际应用场景中测试 | 开发免校准的运动想象脑机接口系统,提高跨被试分类性能 | 运动想象脑机接口的脑电信号分类 | 脑机接口 | NA | 脑电图信号处理 | CNN, GAN | 脑电频谱图像 | BCI competition IV-2B、IV-2A和IV-1基准数据集 | NA | VGG, WGAN | 跨被试分类准确率 | NA |
| 63 | 2025-10-06 |
SQI-DOANet: electroencephalogram-based deep neural network for estimating signal quality index and depth of anaesthesia
2024-07-30, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/ad6592
PMID:39029477
|
研究论文 | 提出一种基于脑电图的深度神经网络SQI-DOANet,用于评估信号质量指数和麻醉深度 | 首次将信号质量评估网络与麻醉深度估计网络结合,采用双注意力模块融合多通道多尺度信息,并引入门控多层感知机提取时序信息 | NA | 开发能够准确估计脑电图信号噪声并可靠评估麻醉深度的深度学习模型 | 手术中的脑电图信号 | 机器学习 | 麻醉监测 | 脑电图 | CNN, 注意力机制, 多层感知机 | 脑电图信号 | 大型VitalDB数据库 | NA | 浅层卷积神经网络, 双注意力模块, 门控多层感知机 | 皮尔逊相关系数, 平均绝对误差 | NA |
| 64 | 2025-10-06 |
Neural activity shaping in visual prostheses with deep learning
2024-07-25, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/ad6186
PMID:38986450
|
研究论文 | 提出一种基于人工神经网络的神经活动塑形方法,用于改善视网膜假体的视觉感知效果 | 首次使用模型无关的深度学习方法实现神经活动塑形,不依赖特定视网膜模型假设 | 目前仅在视网膜响应模拟模型上进行验证,尚未进行真实人体实验 | 提高视网膜假体的空间分辨率和视觉感知质量 | 视网膜假体使用者的神经激活模式 | 计算机视觉 | 视网膜疾病 | 人工神经网络, 多极刺激 | ANN | 自然图像, 神经响应数据 | NA | NA | 测量预测网络, 刺激生成网络 | 视网膜激活锐度, 计算效率 | 比传统方法计算效率提高三个数量级 |
| 65 | 2025-10-06 |
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases
2024-Jul-16, The British journal of dermatology
DOI:10.1093/bjd/ljae142
PMID:38581445
|
研究论文 | 本研究开发了一种基于深度学习的直接免疫荧光模式识别方法,用于自动分类自身免疫性大疱性皮肤病的免疫荧光图像 | 首次将深度学习技术应用于自身免疫性大疱性皮肤病的直接免疫荧光图像自动分类,特别是比较了六种CNN模型和Swin Transformer模型在该领域的表现 | 样本量相对有限(训练集436张,测试集93张图像),存在类别不平衡问题 | 开发AI算法来自动分类自身免疫性大疱性皮肤病的直接免疫荧光模式,提高诊断准确性和效率 | 疑似自身免疫性大疱性皮肤病患者的皮肤活检免疫荧光图像 | 计算机视觉 | 自身免疫性大疱性皮肤病 | 直接免疫荧光 | CNN, Transformer | 图像 | 训练集436张图像,测试集93张图像 | PyTorch | Swin Transformer, 六种CNN架构 | 准确率, 敏感性, 特异性 | NA |
| 66 | 2025-10-06 |
Stepwise Transfer Learning for Expert-level Pediatric Brain Tumor MRI Segmentation in a Limited Data Scenario
2024-07, Radiology. Artificial intelligence
DOI:10.1148/ryai.230254
PMID:38984985
|
研究论文 | 本研究开发了一种基于逐步迁移学习的深度学习模型,用于在有限数据场景下实现专家级别的儿童脑肿瘤MRI分割 | 采用逐步迁移学习方法在有限数据场景下优化模型性能,实现了专家级别的自动分割 | 回顾性研究,数据量有限(共284例样本) | 开发、外部测试并评估儿童脑肿瘤MRI分割模型的临床可接受性 | 儿童低级别胶质瘤患者 | 医学影像分析 | 脑肿瘤 | T2加权MRI | 深度学习神经网络 | MRI图像 | 284例儿童脑肿瘤患者(184例来自国家脑肿瘤联盟,100例来自儿科癌症中心) | NA | NA | Dice系数, Likert评分, 准确率, Turing测试 | NA |
| 67 | 2025-10-06 |
Impact of Transfer Learning Using Local Data on Performance of a Deep Learning Model for Screening Mammography
2024-07, Radiology. Artificial intelligence
DOI:10.1148/ryai.230383
PMID:38717291
|
研究论文 | 评估纽约大学开发的乳腺筛查深度学习系统在澳大利亚本地数据集上的性能表现 | 研究迁移学习使用本地数据对深度学习模型在乳腺筛查中性能的影响 | 回顾性研究,样本量相对有限,仅包含单一澳大利亚地区数据 | 探讨深度学习模型在医学影像中的泛化性和可复制性问题 | 乳腺筛查影像数据 | 计算机视觉 | 乳腺癌 | 乳腺X线摄影 | CNN | 医学影像 | 959名个体(425例恶性肿瘤,490例无恶性肿瘤,44例良性病变) | NA | NA | AUC | NA |
| 68 | 2025-10-06 |
Improving Automated Hemorrhage Detection at Sparse-View CT via U-Net-based Artifact Reduction
2024-07, Radiology. Artificial intelligence
DOI:10.1148/ryai.230275
PMID:38717293
|
研究论文 | 本研究探索基于U-Net的伪影减少技术如何改善稀疏视图颅脑CT扫描中的自动化出血检测性能 | 首次将U-Net伪影减少技术与EfficientNet出血检测模型结合,证明在显著减少CT扫描视图数量的情况下仍能保持高检测性能 | 回顾性研究,使用模拟稀疏视图数据,需要进一步临床验证 | 提高稀疏视图颅脑CT扫描中自动化出血检测的准确性和鲁棒性 | 颅脑CT扫描图像 | 计算机视觉 | 脑出血 | CT扫描 | CNN | 医学图像 | 伪影减少训练:3000名患者;出血检测训练:17545名患者 | NA | U-Net, EfficientNet-B2 | AUC, 结构相似性指数 | NA |
| 69 | 2025-10-06 |
Deep Learning for Breast Cancer Risk Prediction: Application to a Large Representative UK Screening Cohort
2024-07, Radiology. Artificial intelligence
DOI:10.1148/ryai.230431
PMID:38775671
|
研究论文 | 开发一种基于深度学习的人工智能工具,用于从当前阴性筛查乳腺X线检查中预测未来乳腺癌风险 | 首次在英国国家医疗服务体系乳腺筛查项目的大规模代表性队列中开发并验证了基于深度学习的乳腺癌风险预测工具 | 研究仅限于英国特定人群,未包含植入物患者和已确诊癌症病例 | 开发能够从阴性筛查乳腺X线检查预测未来乳腺癌风险的人工智能工具 | 英国国家医疗服务体系乳腺筛查项目中50-70岁女性的筛查数据 | 计算机视觉 | 乳腺癌 | 乳腺X线摄影筛查 | 深度学习 | 乳腺X线图像 | 5264个风险阳性检查和191488个风险阴性检查,总计训练集89285例、验证集2106例、测试集39351例 | NA | NA | AUC, 95%置信区间 | NA |
| 70 | 2024-08-07 |
Vision Transformer-based Deep Learning Models Accelerate Further Research for Predicting Neurosurgical Intervention
2024-07, Radiology. Artificial intelligence
DOI:10.1148/ryai.240117
PMID:38864744
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 71 | 2025-10-06 |
Association of retinal image-based, deep learning cardiac BioAge with telomere length and cardiovascular biomarkers
2024-Jul-01, Optometry and vision science : official publication of the American Academy of Optometry
IF:1.6Q3
DOI:10.1097/OPX.0000000000002158
PMID:38935034
|
研究论文 | 本研究开发了一种基于视网膜图像的深度学习心脏生物年龄模型,用于评估心血管疾病风险并与端粒长度关联 | 首次将视网膜图像与深度学习相结合,开发非侵入性心脏生物年龄评估模型,并与端粒长度建立关联 | 横断面研究设计无法确定因果关系,研究人群仅限于UK Biobank参与者 | 验证深度学习心脏生物年龄模型与传统心血管疾病风险标志物及端粒长度的一致性 | UK Biobank中具有白细胞端粒长度数据的个体 | 数字病理学 | 心血管疾病 | 深度学习 | 深度学习模型 | 视网膜图像 | UK Biobank中具有端粒长度数据的参与者群体 | NA | NA | 相关系数, r平方值, p值 | NA |
| 72 | 2025-06-15 |
A practical machine learning approach for predicting the quality of 3D (bio)printed scaffolds
2024-Jul-25, Biofabrication
IF:8.2Q1
DOI:10.1088/1758-5090/ad6374
PMID:39008994
|
research paper | 本研究提出了一种实用的机器学习方法,用于预测3D(生物)打印支架的质量 | 提供了最全面的开源数据集,并应用了从无监督到监督学习的多种AI技术,开发了一个具有六层隐藏层的全连接神经网络 | AI在组织工程中的应用常因缺乏全面可靠的数据而受到阻碍 | 预测3D(生物)打印支架的质量 | 3D(生物)打印支架 | machine learning | NA | AI, machine learning, deep learning | XGBoost, Gradient Boosting, Extra Trees Classifier, Random Forest Classifier, LightGBM, fully connected neural network | dataset on 3D-printed scaffolds | 1171 scaffolds, 60 biomaterials, 49 cell lines | NA | NA | NA | NA |
| 73 | 2025-06-15 |
A hybrid model for the detection of retinal disorders using artificial intelligence techniques
2024-Jul-10, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ad5db2
PMID:38955139
|
research paper | 该研究提出了一种结合机器学习和深度学习技术的混合模型,用于自动分类视网膜疾病 | 提出了一种新的框架,结合了多种分类器(SVM、K-NN、DT、EM)和InceptionV3 CNN特征提取器,实现了高精度的视网膜疾病分类 | 未提及模型在临床环境中的实际应用效果或泛化能力 | 开发一种自动化的视网膜疾病分类方法 | 视网膜疾病(脉络膜新生血管、糖尿病性黄斑水肿、玻璃膜疣)和正常病例 | computer vision | 视网膜疾病 | OCT(光学相干断层扫描) | SVM、K-NN、DT、EM、InceptionV3 CNN | image | 18000张OCT图像 | NA | NA | NA | NA |
| 74 | 2025-06-14 |
Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review
2024-07, Radiology. Artificial intelligence
DOI:10.1148/ryai.230138
PMID:38568094
|
系统性综述 | 本研究通过系统性综述探讨了深度学习在前列腺MRI分割中的准确性和鲁棒性,并与专业放射科医生进行了比较 | 首次系统性评估深度学习在前列腺MRI分割中的表现,并比较不同MRI厂商、前列腺区域和测试方法下的性能 | 仅纳入截至2022年7月31日前的英文文献,可能遗漏最新研究成果 | 评估深度学习在前列腺MRI分割中的准确性和鲁棒性 | 前列腺MRI图像 | 数字病理学 | 前列腺癌 | MRI | 深度学习算法 | 医学影像 | 48项研究(来自691篇初步筛选文献) | NA | NA | NA | NA |
| 75 | 2025-06-14 |
Validation of de novo designed water-soluble and transmembrane β-barrels by in silico folding and melting
2024-Jul, Protein science : a publication of the Protein Society
IF:4.5Q1
DOI:10.1002/pro.5033
PMID:38864690
|
研究论文 | 通过计算机模拟折叠和熔解验证了从头设计的水溶性和跨膜β桶蛋白 | 揭示了AlphaFold2和ESMFold在不同任务中的优势,并引入了一种基于预测增量扰动的'计算机模拟熔解'新方法 | 缺乏高质量预测模型与实验成功机会之间关系的正式证据 | 验证和比较深度学习结构预测算法在蛋白质设计中的应用 | 从头设计的水溶性和跨膜β桶蛋白 | 计算生物学 | NA | 深度学习结构预测算法(AlphaFold2, ESMFold) | AlphaFold2, ESMFold | 蛋白质序列和结构数据 | NA | NA | NA | NA | NA |
| 76 | 2025-10-06 |
Combining Artificial Intelligence and Simplified Image Processing for the Automatic Detection of Mycobacterium tuberculosis in Acid-fast Stain : A Cross-institute Training and Validation Study
2024-Jul-01, The American journal of surgical pathology
DOI:10.1097/PAS.0000000000002223
PMID:38595262
|
研究论文 | 开发结合人工智能和简化图像处理的自动化结核分枝杆菌检测平台 | 结合图像处理技术与改进的EfficientNet模型,能有效识别染色伪影和污染物,实现跨机构验证 | 仅在两所医院进行训练和验证,样本来源有限 | 提高结核病检测的准确性和效率 | 抗酸染色中的结核分枝杆菌 | 数字病理学 | 结核病 | 抗酸染色 | CNN | 图像 | 来自2家医院的全切片图像 | NA | EfficientNet | 准确率, 检测率 | 高性能计算系统 |
| 77 | 2025-10-06 |
Designing Clinical MRI for Enhanced Workflow and Value
2024-07, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.29038
PMID:37795927
|
综述 | 探讨通过优化MRI工作流程提升临床价值和效率的策略与方法 | 提出结合数字化工具、加速成像技术和建筑设计策略的系统性MRI工作流程优化方案 | 主要基于作者实践经验,缺乏具体数据支持 | 优化临床MRI工作流程以提升医疗价值和效率 | MRI检查流程和相关医疗系统 | 医学影像 | NA | MRI, 深度学习加速图像重建 | NA | 医学影像数据 | NA | NA | NA | NA | NA |
| 78 | 2025-10-06 |
Global and Regional Deep Learning Models for Multiple Sclerosis Stratification From MRI
2024-07, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.29046
PMID:37803817
|
研究论文 | 本研究比较了全脑输入采样策略与区域/特定组织策略在基于MRI对多发性硬化症患者进行残疾水平分层中的性能差异 | 首次系统比较了全脑输入策略与针对已知残疾累积相关区域的局部策略在MS患者分层中的效果 | 回顾性研究设计,样本量相对有限,仅使用单一供应商的MRI设备 | 比较不同MRI输入策略对多发性硬化症患者残疾水平分层的性能影响 | 多发性硬化症患者的脑部MRI扫描数据 | 医学影像分析 | 多发性硬化症 | 磁共振成像 | CNN | 3D脑部MRI图像 | 319名MS患者(382次脑部MRI扫描)的内部数据集和440名来自多个中心的MS患者的外部验证队列 | NA | 3D-CNN | 平衡准确度, 敏感度, 特异度, AUC | NA |
| 79 | 2025-10-06 |
Automated Breast Density Assessment in MRI Using Deep Learning and Radiomics: Strategies for Reducing Inter-Observer Variability
2024-07, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.29058
PMID:37846440
|
研究论文 | 本研究开发了深度学习和影像组学模型,用于自动评估乳腺密度并减少观察者间差异 | 结合深度学习和影像组学方法,通过AI辅助判读显著提高了乳腺密度评估的一致性 | 回顾性研究设计,样本量相对有限(621例患者) | 评估人工智能辅助判读在减少乳腺密度评估观察者间差异方面的可行性 | 621名无乳房假体或重建的患者 | 医学影像分析 | 乳腺癌 | MRI成像,T1加权光谱衰减反转恢复序列 | 深度学习,影像组学 | MRI图像 | 621例患者(训练集377例,验证集98例,独立测试集146例) | NA | NA | kappa统计量,准确率,AUC | NA |
| 80 | 2025-10-06 |
Magnetic Resonance Deep Learning Radiomic Model Based on Distinct Metastatic Vascular Patterns for Evaluating Recurrence-Free Survival in Hepatocellular Carcinoma
2024-07, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.29064
PMID:37888871
|
研究论文 | 本研究开发了一种基于转移性血管模式的磁共振深度学习放射组学模型,用于评估肝细胞癌患者的无复发生存期 | 首次结合VETC和MVI两种转移性血管模式构建深度学习模型评估HCC患者预后 | 回顾性研究设计,样本量相对有限,需要多中心前瞻性验证 | 构建和比较与肝细胞癌无复发生存期相关的VETC-MVI模型 | 398例接受切除术的肝细胞癌患者 | 数字病理 | 肝细胞癌 | 磁共振成像 | 深度学习模型 | 医学影像 | 398例HCC患者(训练队列358例,测试队列40例) | NA | NA | C-index, AUC | NA |