深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202407-202407] [清除筛选条件]
当前共找到 1312 篇文献,本页显示第 921 - 940 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
921 2024-08-05
Atomic-Scale 3D Structure of a Supported Pd Nanoparticle Revealed by Electron Tomography with Convolution Neural Network-Based Image Inpainting
2024-Jul, Small methods IF:10.7Q1
研究论文 该研究利用电子断层成像和深度学习方法分析了支持金属纳米颗粒的三维原子结构 提出了一种基于深度学习的图像修复方法,有效分离并重建了支持的Pd纳米颗粒的三维结构 研究中未提及具体的样本选择标准和实验重复性问题 分析金属纳米颗粒的原子级三维结构并理解其催化性质 支持的Pd纳米颗粒及其与支持材料的界面 数字病理学 NA 电子断层成像,深度学习图像修复 NA 图像 观察到一个11 nm的Pd纳米颗粒
922 2024-08-05
Deep learning based detection and classification of fetal lip in ultrasound images
2024-Jul-22, Journal of perinatal medicine IF:1.7Q2
研究论文 本文利用深度学习技术开发了一种新的模型,以快速准确评估胎儿唇部发育。 提出并验证了Yolov5-ECA模型,以提高胎儿唇部检测和分类的准确性。 未提及具体的模型在临床应用中的泛化能力和局限性。 旨在提供更客观的分娩前检查中胎儿唇部发育的预测。 629名怀孕中期的孕妇,进行了胎儿唇部的超声检查。 计算机视觉 NA 深度学习 Yolov5-ECA 超声图像 632个孕妇的正常和异常胎儿唇超声图像
923 2024-08-05
Promoting the Shift From Pixel-Level Correlations to Object Semantics Learning by Rethinking Computer Vision Benchmark Data Sets
2024-Jul-19, Neural computation IF:2.7Q3
research paper 该文章探讨了卷积神经网络在提取原始像素数据的模式方面的能力以及其与人类视觉感知的差异 提出了一种方法,强调人类感知和物体识别的核心视觉特征,如颜色、纹理和形状 研究主要集中在特定基准数据集的处理,可能不适用于其他类型的视觉数据 研究旨在推动计算机视觉领域从像素级关联转向物体语义学习 基于Fruits 360、CIFAR-10和Fashion MNIST三个基准数据集实验的视觉特征 计算机视觉 NA 卷积神经网络(CNN) CNN 图像 使用了CIFAR-10数据集和斯坦福狗数据集中的图像样本
924 2024-08-05
Control charts in healthcare quality monitoring: a systematic review and bibliometric analysis
2024-Jul-19, International journal for quality in health care : journal of the International Society for Quality in Health Care IF:2.7Q2
系统评价 本研究提供了控制图在医疗质量监测中的作用和未来前景的全面理解 采用系统评价和开创性的文献计量分析相结合的方法,揭示出控制图的关键趋势、方法论和新兴主题 未提及具体的研究限制 探讨控制图在医疗质量监测中的应用 分析文献中与控制图相关的研究,涵盖1995年至2023年的关键趋势和主题 数字病理学 NA 文献计量分析 NA 文章 分析了223篇文章中的73篇和184篇相关的文献
925 2024-08-05
Sentiment and semantic analysis: Urban quality inference using machine learning algorithms
2024-Jul-19, iScience IF:4.6Q1
研究论文 这项研究探讨了通过机器学习算法对城市质量进行推断的情感和语义分析 文章的创新点在于自动化访谈编码过程,并应用最先进的自然语言处理技术进行情感和语义分类 研究使用的是部分注释的数据集,可能影响模型的训练和评估效果 研究旨在探讨如何利用机器学习算法分析人们对城市环境的感知和意见 研究对象为对特定主题或地点的定性访谈 自然语言处理 NA BERT 多类分类模型 文本 部分注释的数据集
926 2024-08-05
Evaluation of artificial intelligence-powered screening for sexually transmitted infections-related skin lesions using clinical images and metadata
2024-Jul-18, BMC medicine IF:7.0Q1
研究论文 本文开发并评估了一种基于临床图像和症状的深度学习模型,用于区分性传播感染和非性传播感染的皮肤病变 提出了一种结合卷积神经网络和全连接神经网络的综合模型,以提高性传播感染的诊断准确性 需要在更大规模的数据集上进一步开发和评估以验证其在临床环境中的筛查工具效果 提高性传播感染的早期诊断和治疗能力 4913张生殖病变的临床图像及其相关元数据 计算机视觉 性传播感染 深度学习 卷积神经网络(CNN)和全连接神经网络(FCN) 图像 1583张性传播感染图像和3330张非性传播感染图像
927 2024-08-05
GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph
2024-Jul-18, BMC biology IF:4.4Q1
研究论文 本文提出了一种新的方法GSRF-DTI,通过深度学习和网络集成来识别药物与靶点之间的相互作用 GSRF-DTI通过整合多种药物和靶点关联信息来学习嵌入表示,并引入药物-靶点对网络以提高DTI预测的准确性 实验过程中主要依赖于特定的数据集,可能影响模型的泛化能力 提高药物-靶点相互作用预测的准确性,支持药物发现和再利用 药物与靶点的相互作用关系 计算机视觉 NA 深度学习,GraphSAGE,随机森林 NA 网络数据 使用Luo的数据集和新构建的数据集进行实验
928 2024-08-05
A deep position-encoding model for predicting olfactory perception from molecular structures and electrostatics
2024-Jul-17, NPJ systems biology and applications IF:3.5Q1
研究论文 本研究介绍了一种深度学习模型Mol-PECO,用于根据分子结构和电静力学预测嗅觉感知 提出了一种新颖的深度学习模型,通过库伦矩阵进行分子的有效嵌入,从而改进了嗅觉预测 缺乏对模型在真实应用中有效性的验证 探讨分子结构与嗅觉感知之间的关系 嗅觉分子及其描述符数据集 机器学习 NA 深度学习 Mol-PECO 分子结构数据 全面的嗅觉分子和描述符数据集
929 2024-08-05
Deep learning-based measurement of split glomerular filtration rate with 99mTc-diethylenetriamine pentaacetic acid renal scan
2024-Jul-17, EJNMMI physics IF:3.0Q2
研究论文 本文旨在开发一个深度学习模型,用于在99mTc-DTPA肾扫描中生成自动感兴趣区域(ROIs)以测量肾小球滤过率(GFR) 提出了一种使用多通道输入的二维U-Net卷积神经网络架构进行ROI生成的创新方法 研究未提及对不同类型患者或其他病理条件的适用性 研究的目的是提高99mTc-DTPA肾扫描中肾小球滤过率的测量准确性 分析了来自12,822名患者的24,364个肾扫描数据 计算机视觉 NA 深度学习 U-Net 扫描图像 24,364个扫描(12,822名患者)
930 2024-08-07
Design and application of coal gangue sorting system based on deep learning
2024-Jul-17, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于深度学习的非接触式煤矸石识别与气动智能分拣系统 开发了一个动态数据库并明确了弹射速度、质量、体积和入射角与冲击能量匹配机制之间的关系 未提及具体的系统实时性和适应性限制 旨在提升煤矸石分拣的准确性和效率 煤矸石的自动识别和分拣 机器学习 NA 深度学习 NA 图像 系统原型的演示实验结果显示,识别准确率超过97%,分拣率超过91%
931 2024-08-05
Automated interpretation of retinal vein occlusion based on fundus fluorescein angiography images using deep learning: A retrospective, multi-center study
2024-Jul-15, Heliyon IF:3.4Q1
研究论文 本研究开发了一种基于深度学习的系统,用于自动诊断和分类视网膜静脉阻塞(RVO) 该研究的创新点在于提出了一个全新的深度学习模型,能够自动化标注和分类FFA图像,用于RVO的诊断 该研究的局限性在于只能在收集到的FFA图像上进行验证,可能不适用于所有类型的视网膜病变 本研究旨在利用FFA图像开发一种准确有效的RVO诊断系统 研究对象为来自463名患者的467只眼睛的4028张FFA图像 数字病理学 NA 深度学习 CNN (卷积神经网络) 图像 4028张FFA图像,来自463名患者的467只眼睛
932 2024-08-05
A Deep Learning-Based Rotten Food Recognition App for Older Adults: Development and Usability Study
2024-Jul-03, JMIR formative research IF:2.0Q4
研究论文 本研究开发并评估了一款智能手机应用,帮助老年人识别腐烂的水果 提出了一种基于深度学习的应用,通过拍摄水果照片来判断水果是否新鲜,从而解决老年人识别腐烂食物的困难 该应用目前仅限于对三种水果的检测,尚需扩展到其他食品的识别 开发一款帮助老年人识别腐烂水果的智能手机应用 参与者为65岁以上的健康老年人,共26人 数字病理学 NA 深度学习 残差深度网络 图像 26名老年人(15名男性和11名女性)
933 2024-08-05
Data-driven rogue waves solutions for the focusing and variable coefficient nonlinear Schrödinger equations via deep learning
2024-Jul-01, Chaos (Woodbury, N.Y.)
研究论文 本研究利用深度学习方法探讨聚焦和变系数非线性薛定谔方程的数据驱动浪涌波解 提出了一种基于物理信息记忆网络的解决方案,能够很好地捕捉浪涌波解的非线性特征 未提及具体的局限性 研究如何通过深度学习方法解决聚焦和变系数非线性薛定谔方程 聚焦和变系数非线性薛定谔方程的浪涌波解 机器学习 NA 深度学习 物理信息记忆网络(PIMN) 数值数据 NA
934 2024-08-05
Interpretation of SPECT wall motion with deep learning
2024-Jul, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology IF:3.0Q2
研究论文 本研究开发了一种新型深度学习工作流,以解读单光子发射计算机断层扫描(SPECT)的壁运动 使用深度学习模型提高了SPECT壁运动评估的准确性,克服了传统方法的局限性 研究可能受限于患者样本特性及模型在其他数据集上的外部验证 提升对静息SPECT壁运动的解读能力 包含1038名接受静息心电图门控SPECT和超声心动图的患者 数字病理学 心血管疾病 深度学习 DL模型 图像 1038名患者
935 2024-08-05
Opening the Black Box: Spatial Transcriptomics and the Relevance of Artificial Intelligence-Detected Prognostic Regions in High-Grade Serous Carcinoma
2024-Jul, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc IF:7.1Q1
研究论文 本文利用空间转录组学解析人工智能识别的高等级浆液性癌症预后区域 本文创新性地应用空间转录组学分析AI识别的肿瘤区域,揭示与患者结果相关的生物特征 研究样本量较小,仅包含16名患者,可能影响结果的普遍适用性 研究高等级浆液性癌症与预后之间的关系,特别是肿瘤区域的生物特征 涉及16名高等级浆液性癌症患者,重点研究不同预后组之间的肿瘤区域 数字病理学 卵巢癌 空间转录组学 AI模型 生物组织样本 16名患者(每个预后组8名)
936 2024-08-07
A deep learning model accurately predicts 1-year mortality but at the risk of unfairness
2024-Jul, Nature aging IF:17.0Q1
NA NA NA NA NA NA NA NA NA NA NA NA
937 2024-08-05
Deep learning-based voxel sampling for particle therapy treatment planning
2024-Jul-19, Physics in medicine and biology IF:3.3Q1
研究论文 本文提出了一种基于深度学习的体素采样方法来改善粒子治疗的治疗计划 引入了一种不依赖于特定患者输入的深度学习模型,以实现最佳体素采样 使用了70名头颈癌患者的数据进行训练,可能限制了模型的泛化能力 旨在通过优化体素选择过程来提高粒子治疗的计算效率 研究对象为接受碳离子治疗的头颈癌患者 数字病理学 NA 人工智能(AI)基础设施 深度学习模型 治疗计划数据 70名头颈癌患者(50名用于训练,10名用于验证,10名用于测试)
938 2024-08-05
Uncertainty quantification via localized gradients for deep learning-based medical image assessments
2024-Jul-19, Physics in medicine and biology IF:3.3Q1
研究论文 本研究介绍了一种新的基于梯度的不确定性量化方法,用于深度学习医学图像评估. 提出了一种新的后处理不确定性量化方法,克服了现有方法的局限,能够增强用户对临床模型的信任. 研究主要集中在转移疾病的分界,可能不适用于其他类型的医学图像评估. 旨在提高深度学习医学图像评估模型的可靠性和用户信任. 研究对象为深度学习模型在医学图像评估中的应用,包括转移性疾病的检测. 数字病理学 NA 深度学习 NA 图像 四个临床相关实验的性能评估
939 2024-08-05
CGMega: explainable graph neural network framework with attention mechanisms for cancer gene module dissection
2024-Jul-17, Nature communications IF:14.7Q1
研究论文 提出一种解释性图神经网络框架CGMega,以进行癌症基因模块分解 开发了基于图注意力的深度学习框架CGMega,超越当前癌症基因预测方法,并有效整合多组学信息 NA 研究癌症基因模块的分解及其在癌症发展中的作用 应用CGMega于乳腺癌细胞系和急性髓系白血病患者 数字病理学 急性髓系白血病 深度学习 图神经网络 基因组数据 乳腺癌细胞系和急性髓系白血病患者的样本
940 2024-08-05
Identifying rice field weeds from unmanned aerial vehicle remote sensing imagery using deep learning
2024-Jul-16, Plant methods IF:4.7Q1
研究论文 本文提出了一种名为RMS-DETR的多尺度特征增强DETR网络,用于识别水稻田杂草 通过在DETR模型中添加多尺度特征提取分支,提升了对水稻田杂草的识别能力 引入多尺度特征层导致模型计算增加,降低了模型推理速度 旨在提高水稻田杂草的精确识别能力,以便于精准喷药 水稻田中的杂草 计算机视觉 NA 深度学习 DETR 图像 构建的水稻田杂草数据集和DOTA公共数据集
回到顶部