本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1041 | 2024-08-05 |
Multiview Deep Subspace Clustering Networks
2024-Jul, IEEE transactions on cybernetics
IF:9.4Q1
DOI:10.1109/TCYB.2024.3372309
PMID:38517724
|
研究论文 | 该文章提出了一种多视角深度子空间聚类网络,以解决现有方法在特征学习和聚类中的不足 | 提出了多视角深度子空间聚类网络(MvDSCN),使用多视角自表示矩阵进行端到端学习 | 当前研究未明确提及潜在的限制 | 旨在通过融合多视角互补信息来发现数据的内在结构 | 研究对象为多视角数据,通过学习自表示矩阵进行聚类 | 机器学习 | NA | 深度卷积自编码器 | NA | NA | NA |
1042 | 2024-08-05 |
Machine Learning-Assisted Decision Making in Orthopaedic Oncology
2024-Jul-01, JBJS reviews
IF:1.7Q2
|
研究论文 | 本研究探讨了机器学习在骨肿瘤学决策中的应用 | 文章创新点在于利用机器学习算法改善影像学评估和诊断,同时开发了预测原发性肉瘤和转移性骨病存活率的计算器 | 模型的鲁棒性需要通过标准化指南进行评估,且依然面临数据多样化、伦理问题和模型可解释性等挑战 | 研究的目的是利用机器学习提升骨肿瘤学中的临床预测能力 | 研究对象为原发性肉瘤和转移性骨病患者的特定数据 | 机器学习 | 癌症 | 机器学习算法 | 深度学习 | 数据集 | NA |
1043 | 2024-08-05 |
Projected pooling loss for red nucleus segmentation with soft topology constraints
2024-Jul, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.4.044002
PMID:38988992
|
研究论文 | 提出了一种基于投影池损失的新方法,以软拓扑约束自动分割红核 | 引入了一种新颖的损失函数,通过放大结构的小部分来引入软拓扑约束 | 对于小训练集可能仍然存在高准确度但极少的拓扑错误 | 研究旨在改善医学图像分割中的拓扑约束 | 主要研究对象是从定量易感映射中分割红核 | 医学图像处理 | 帕金森综合征 | 深度学习 | NA | 医学图像 | NA |
1044 | 2024-08-05 |
Prediction of disease severity in COPD: a deep learning approach for anomaly-based quantitative assessment of chest CT
2024-Jul, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-10540-3
PMID:38150075
|
研究论文 | 本文量化了与COPD相关的胸部CT异常,并评估其预测疾病严重性的潜力 | 提出了一种自我监督的深度学习异常检测方法,能够区分低风险个体和COPD患者,并在两个数据集上优于经典深度学习方法 | 缺乏对呼气图像的分析在某些情况下可能会影响模型的性能 | 量化COPD的区域表现为异常,并预测疾病的严重程度 | COPDGene和COSYCONET队列研究中的COPD患者和健康个体 | 计算机视觉 | 慢性阻塞性肺病 | 深度学习(DL) | 自我监督深度学习模型 | CT图像 | COPDGene数据集3144个(训练/验证/测试),COSYCONET数据集446个(外部测试集) |
1045 | 2024-08-05 |
Lung vessel connectivity map as anatomical prior knowledge for deep learning-based lung lobe segmentation
2024-Jul, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.4.044001
PMID:38988990
|
研究论文 | 本研究探讨将解剖学先验知识纳入深度学习方法以自动分割胸部CT扫描中的肺叶的潜在好处 | 引入肺血管连通图作为解剖学信息来指导和增强肺叶分割过程 | 尽管纳入LVC信息可以提高分割性能,但这种改善的程度存在局限性 | 探讨将解剖学知识集成到深度学习模型中的效果以提高肺叶分割的准确性 | 研究对象为肺叶在胸部CT扫描中的自动分割 | 计算机视觉 | 肺炎 | 深度学习 | U-Net | 图像 | 10例 COVID-19 相关病例 |
1046 | 2024-08-05 |
The effect of incorporating domain knowledge with deep learning in identifying benign and malignant gastric whitish lesions: A retrospective study
2024-Jul, Journal of gastroenterology and hepatology
IF:3.7Q2
DOI:10.1111/jgh.16525
PMID:38414305
|
研究论文 | 本研究开发了一种结合领域知识和传统深度学习的系统,旨在检测胃部白色肿瘤 | 首次将领域知识与深度学习结合来提高胃部白色病变的诊断准确性 | 本研究为回顾性研究,可能存在样本选择偏差 | 探讨结合领域知识对深度学习模型诊断胃部白色病变的影响 | 研究对象为4558张来自两个机构的胃部白色病变图像 | 数字病理 | NA | 深度学习(DL)和机器学习(ML) | 决策树 | 图像 | 4558张图像 |
1047 | 2024-08-05 |
Deep learning for malignancy risk estimation of incidental sub-centimeter pulmonary nodules on CT images
2024-Jul, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-10518-1
PMID:38114849
|
研究论文 | 本文旨在建立深度学习模型,以评估胸部CT意外发现的亚厘米肺结节的恶性风险 | 通过不同的兴趣区域开发了四个深度学习模型,以评估亚厘米肺结节的恶性,且提出的深度学习方法可帮助临床医生优化后续建议 | 外部验证时,跟踪影像不可用,可能影响模型表现 | 旨在建立深度学习模型以帮助临床环境中评估肺结节的恶性风险 | 对来自西中国医院的亚厘米肺结节的CT影像进行研究 | 数字病理学 | 肺癌 | 深度学习 | 深度学习模型 | CT影像 | 训练集1822个结节(981个恶性),测试集806个(416个恶性),外部集357个(253个恶性) |
1048 | 2024-08-05 |
An efficient hybrid deep learning architecture for predicting short antimicrobial peptides
2024-Jul, Proteomics
IF:3.4Q2
DOI:10.1002/pmic.202300382
PMID:38837544
|
研究论文 | 提出了一种高效的混合深度学习架构iAMP-DL,以预测短抗菌肽 | 引入了结合长短期记忆架构和卷积神经网络的混合深度学习模型,表现优于现有最先进的方法 | 有限地探讨了其他计算方法在不同场景下的适用性 | 开发一种高效的计算方法,以改善短抗菌肽的预测和筛选 | 短长度抗菌肽的预测和识别 | 机器学习 | NA | 深度学习 | LSTM和卷积神经网络 | NA | 实验重复10次以评估模型的稳定性 |
1049 | 2024-08-05 |
Deep Learning Prediction of Triplet-Triplet Annihilation Parameters in Blue Fluorescent Organic Light-Emitting Diodes
2024-Jul, Advanced materials (Deerfield Beach, Fla.)
DOI:10.1002/adma.202312774
PMID:38652081
|
研究论文 | 本文探讨了深度学习模型在预测蓝光荧光有机发光二极管中的三重态-三重态湮灭参数的应用 | 提出了一种新的三重态湮灭模型,考虑了极化子和激子动力学,显著提高了对预测精度的理解 | 未提及具体的样本限制或适用范围 | 研究三重态激子对辐射单重态激子的贡献 | 采用瞬态电致发光数据预测三重态湮灭比例和速率系数 | 机器学习 | NA | 深度学习 | NA | 瞬态电致发光数据 | NA |
1050 | 2024-08-05 |
Deep learning-based prognostication in idiopathic pulmonary fibrosis using chest radiographs
2024-Jul, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-10501-w
PMID:38112764
|
研究论文 | 本文开发并验证了一种基于深度学习的预测模型,用于评估特发性肺纤维化患者的预后。 | 该研究创新性地使用胸部放射影像建立了深度学习模型,表现出了与肺活量检查相当甚至更好的预后性能。 | 研究主要依靠来自几所独立机构的数据集进行外部验证,可能存在数据偏差。 | 研究旨在创建和验证一种新的预后模型,以提高特发性肺纤维化的生存预测能力。 | 研究对象为在2011至2021年间被诊断为特发性肺纤维化的患者。 | 医学影像处理 | 特发性肺纤维化 | 深度学习 | 深度学习预测模型(DLPM) | 影像 | 6063幅胸部放射影像,训练集1007名患者,验证集117名患者,内部测试187名患者,以及外部测试三个组共470名患者 |
1051 | 2024-08-05 |
Explicable Fine-Grained Aircraft Recognition Via Deep Part Parsing Prior Framework for High-Resolution Remote Sensing Imagery
2024-Jul, IEEE transactions on cybernetics
IF:9.4Q1
DOI:10.1109/TCYB.2023.3293033
PMID:37552595
|
研究论文 | 提出了一种基于部件解析先验的可解释飞机识别框架,以改善高分辨率遥感图像中的飞机识别性能 | 该框架通过显式区域划分和知识驱动的方法,提供了细粒度的飞机结构解析,以增强特征提取和分类能力 | 在训练数据有限的情况下,识别性能的提升仍存在挑战 | 提高高分辨率遥感图像中飞机识别的有效性和准确性 | 通过部件解析来识别和分类飞机 | 计算机视觉 | NA | 深度学习 | 部分注意力模型 | 图像 | 在两个飞机识别数据集上进行了评估 |
1052 | 2024-08-05 |
Value of CT quantification in progressive fibrosing interstitial lung disease: a deep learning approach
2024-Jul, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-10483-9
PMID:38085286
|
研究论文 | 本研究评估了基于深度学习的CT定量与强迫肺活量及间质性肺病进展的视觉评估之间的关系 | 使用深度学习技术量化间质性肺病的CT特征,提供了独立的预后因素 | 样本的时间间隔较长,可能影响数据的时效性和相关性 | 探讨基于CT的定量分析在进展性纤维化间质性肺病中的重要性及其预后意义 | 纳入了468名间质性肺病患者,进行CT扫描和深度学习分析 | 数字病理学 | 间质性肺病 | 深度学习 | NA | 影像 | 468名患者(239名男性;64 ± 9.5岁) |
1053 | 2024-08-05 |
Differential privacy preserved federated learning for prognostic modeling in COVID-19 patients using large multi-institutional chest CT dataset
2024-Jul, Medical physics
IF:3.2Q1
DOI:10.1002/mp.16964
PMID:38335175
|
研究论文 | 本文探讨了一种基于深度学习的隐私保护联邦学习方法,以预测COVID-19患者的预后。 | 提出了一种深度隐私保护联邦学习方法,在多机构的胸部CT图像数据上进行COVID-19预后建模,并确保数据隐私。 | 模型的准确性与中央模型相当,但未显示出统计学上显著的差异。 | 评估深度隐私保护联邦学习在COVID-19结果预测中的表现。 | 3055名COVID-19患者的数据,来自19个医疗中心。 | 机器学习 | COVID-19 | 深度学习 | DensNet | 胸部CT图像 | 3055名患者,包括1599名存活者和1456名去世者 |
1054 | 2024-08-07 |
Deep learning-based diagnostic models for bone lesions: is current research ready for clinical translation?
2024-Jul, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-10555-w
PMID:38189983
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1055 | 2024-08-05 |
Deep demosaicking convolution neural network and quantum wavelet transform-based image denoising
2024-Jul-11, Network (Bristol, England)
DOI:10.1080/0954898X.2024.2358950
PMID:38989778
|
研究论文 | 本研究开发了一种基于深度学习的图像去噪和去马赛克的方法 | 提出了结合量子小波变换和自回归圆波优化的去马赛克卷积神经网络 | 未提及具体的局限性 | 寻求适合多重图像恢复的策略 | 解决图像去噪和去马赛克问题的深度学习模型 | 计算机视觉 | NA | 量子小波变换 | DMCNN | 图像 | NA |
1056 | 2024-08-05 |
A hybrid model for the detection of retinal disorders using artificial intelligence techniques
2024-Jul-10, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ad5db2
PMID:38955139
|
研究论文 | 该研究旨在创建一种自动化的方法,通过光学相干断层扫描(OCT)来分类视网膜疾病 | 提出了一种结合机器学习和深度学习技术的新框架 | NA | 研究自动识别和分类视网膜疾病的方法 | 视网膜疾病,包括脉络膜新生血管、糖尿病性黄斑水肿、眼底脂质沉积和正常病例 | 计算机视觉 | NA | 光学相干断层扫描(OCT) | 支持向量机(SVM)、K-最近邻(K-NN)、决策树(DT)、集成模型(EM) | 图像 | 18000张OCT图像 |
1057 | 2024-08-05 |
Anatomical-Marker-Driven 3D Markerless Human Motion Capture
2024-Jul-09, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3424869
PMID:38980775
|
研究论文 | 提出了一种基于解剖标记的无标记三维人动作捕捉方法。 | 通过使用解剖学 landmark 和深度神经网络来提高 2D 关键点标注的精度,进而计算 3D 标记位置。 | 方法依赖于高质量的标注数据,数据集的标注错误会影响最终的估计准确度。 | 改善无标记运动捕捉的精度,使其在生物力学研究中得到更广泛的应用。 | 测试集包含 10 名受试者执行的各种动作。 | 计算机视觉 | NA | 深度学习 | 深度神经网络 | 图像 | 10 个受试者 |
1058 | 2024-08-05 |
Deep learning based bilateral filtering for edge-preserving denoising of respiratory-gated PET
2024-Jul-09, EJNMMI physics
IF:3.0Q2
DOI:10.1186/s40658-024-00661-z
PMID:38977533
|
研究论文 | 本文探讨了一种基于深度学习的双边滤波方法用于呼吸门控PET图像的边缘保持去噪。 | 采用深度学习优化双边滤波操作,自动化实现了手动调整的去噪效果。 | 在大多数数据集上选择了合适的滤波参数,少数情况下仍需人工调优。 | 提高呼吸门控PET图像的去噪效果,同时保持图像边缘。 | 使用69个呼吸门控临床PET/CT扫描数据,涉及不同放射性示踪剂。 | 数字病理学 | NA | 深度学习 | 3D U-Net CNN | 图像 | 69个呼吸门控临床PET/CT扫描样本 |
1059 | 2024-08-05 |
Optimization of vision transformer-based detection of lung diseases from chest X-ray images
2024-Jul-08, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-024-02591-3
PMID:38978027
|
研究论文 | 本文系统评估和比较了不同优化方法在基于视觉变换器的肺病预测中的性能 | 探究了不同优化器在视觉变换器模型中的有效性,是对该领域的前沿研究 | 未提及特定的限制因素 | 旨在优化基于视觉变换器的肺病检测模型 | 胸部X光图像数据集中的正常病例和六种肺病 | 计算机视觉 | 肺癌 | 深度学习 | ViT,FastViT,CrossViT | 图像 | 19003幅X光图像 |
1060 | 2024-08-07 |
Author Correction: A study on deep learning model based on global-local structure for crowd flow prediction
2024-Jul-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-66605-w
PMID:38977774
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |