本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1221 | 2024-08-05 |
LinFlo-Net: A Two-Stage Deep Learning Method to Generate Simulation Ready Meshes of the Heart
2024-07-01, Journal of biomechanical engineering
DOI:10.1115/1.4064527
PMID:38258957
|
研究论文 | 本文提出了一种深度学习模型,可以自动生成患者影像数据的人体心脏计算模型。 | 该方法通过使用两阶段的微分变形过程及新颖的损失函数来最小化网格自穿透,保证生成的网格没有自交现象。 | 未提及 | 研究旨在开发一种能够生成适合物理模拟的心脏网格模型。 | 研究对象为患者影像数据转换为心脏的计算模型。 | 数字病理 | NA | 深度学习 | NA | 影像 | NA |
1222 | 2024-08-05 |
EPR-Net: constructing a non-equilibrium potential landscape via a variational force projection formulation
2024-Jul, National science review
IF:16.3Q1
DOI:10.1093/nsr/nwae052
PMID:38883298
|
研究论文 | 我们提出EPR-Net,一种新颖而有效的深度学习方法,用于构建高维非平衡稳态系统的势能景观 | EPR-Net利用了一个数学事实,即所需的负势能梯度只是底层动力学驱动力在加权内积空间中的正交投影,并与稳态熵产生率有密切关系 | 在小噪声系统的情况下,可能需要强化学习策略,而在其他背景下可能表现不佳 | 解决生物物理学中的潜能景观构建问题 | 高维非平衡稳态系统,包括八维极限环和五十二维多稳态问题 | 机器学习 | NA | 深度学习 | NA | NA | NA |
1223 | 2024-08-05 |
Clinical evaluation of a deep learning CBCT auto-segmentation software for prostate adaptive radiation therapy
2024-Jul, Clinical and translational radiation oncology
IF:2.7Q2
DOI:10.1016/j.ctro.2024.100796
PMID:38884004
|
研究论文 | 本文旨在评估一种基于深度学习的前列腺CBCT图像自动分割软件在临床适应性放疗中的应用 | 该研究首次系统地评估了一种新的深度学习自动分割软件,并提出了使用特定成像模式训练的算法 | 样本量较小,仅包含10名患者,所涉及的结构主要集中在前列腺及相关组织 | 评估深度学习自动分割软件在前列腺放疗中的临床适用性 | 研究对象为接受前列腺放疗的10名患者 | 医学影像处理 | 前列腺癌 | 深度学习 | NA | CBCT图像 | 10名患者 |
1224 | 2024-08-05 |
Convolutional neural networks combined with classification algorithms for the diagnosis of periodontitis
2024-Jul, Oral radiology
IF:1.6Q3
DOI:10.1007/s11282-024-00739-5
PMID:38393548
|
研究论文 | 本文旨在开发一种结合卷积神经网络和分类算法的深度学习模型,以帮助牙医快速准确地诊断牙周炎的阶段 | 本文创新性地将多种CNN模型与分类算法结合,提高了牙周炎诊断的准确性和效率 | 未提及本文可能的局限性 | 提高牙周炎的诊断效率和准确率 | 牙周炎的阶段诊断 | 计算机视觉 | 口腔疾病 | 卷积神经网络(CNN) | Alexnet, VGG16, ResNet18 | 影像(根尖放射线照相)和临床数据 | 未提供具体样本数量 |
1225 | 2024-08-05 |
Artificial intelligence for caries detection: a novel diagnostic tool using deep learning algorithms
2024-Jul, Oral radiology
IF:1.6Q3
DOI:10.1007/s11282-024-00741-x
PMID:38498223
|
研究论文 | 本文旨在利用深度学习算法开发一种自动检测牙齿龋齿的评估工具 | 提出了一种名为ResNet+SAM的新型诊断模型,能够自动检测牙齿龋齿,并在性能上优于传统的CNN模型 | 文章未提及具体的算法训练细节或潜在的进一步验证 | 开发一种用于自动检测牙齿龋齿的工具 | 使用4278幅经医学专家注释的根尖X光照片来训练和验证模型 | 计算机视觉 | NA | 卷积神经网络 | ResNet+SAM | 图像 | 4278幅根尖X光照片 |
1226 | 2024-08-05 |
Advanced deep learning algorithm for instant discriminating of tea leave stress symptoms by smartphone-based detection
2024-Jul, Plant physiology and biochemistry : PPB
IF:6.1Q1
DOI:10.1016/j.plaphy.2024.108769
PMID:38797010
|
研究论文 | 本研究提出了一种基于智能手机的深度学习模型,用于快速检测茶叶的压力症状。 | 提出了一种便携式智能手机检测方法,并适应YOLOv5m和YOLOv8m算法,实现了高精度区分茶叶压力症状。 | 研究未提及可能的环境因素对检测结果的影响 | 旨在开发一种在复杂自然环境中快速监测茶叶压力的技术 | 开发了一个包含10000多张茶园冠层图像的数据库 | 计算机视觉 | NA | 深度学习 | YOLOv8m | 图像 | 超过10000张图像 |
1227 | 2024-08-05 |
Marine oil spill detection and segmentation in SAR data with two steps Deep Learning framework
2024-Jul, Marine pollution bulletin
IF:5.3Q1
DOI:10.1016/j.marpolbul.2024.116549
PMID:38850755
|
研究论文 | 本研究开发了一种基于深度学习的海洋油污检测和分割方法 | 探索了九十种CNN配置,并创建了新的Sentinel-1图像数据集 | 未提及具体的局限性 | 旨在提高海洋油污分类和分割的准确性 | 使用Sentinel-1 SAR图像进行油污检测 | 计算机视觉 | NA | 深度学习 | CNN, MLP, U-Net | 图像 | NA |
1228 | 2024-08-05 |
Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis
2024-Jul, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2024.111510
PMID:38781919
|
系统评价与 meta 分析 | 评估 CT 基于放射组学算法和深度学习模型在胰腺导管腺癌患者中术前识别淋巴结转移的诊断准确性 | 本研究通过元分析显示了 CT 基于放射组学和深度学习模型在预测胰腺导管腺癌患者淋巴结转移方面的良好表现 | 研究中未发现研究类型(放射组学 vs 深度学习)或数据集大小对诊断比值比(DOR)有显著影响 | 探讨 CT 基于放射组学和深度学习模型的诊断准确性 | 针对胰腺导管腺癌患者的淋巴结转移进行的相关研究 | 数字病理学 | 胰腺癌 | CT 扫描 | 放射组学和深度学习模型 | 影像 | 共纳入 485 名患者(213 名用于放射组学研究,272 名用于深度学习研究) |
1229 | 2024-08-05 |
Lensless shadow microscopy-based shortcut analysis strategy for fast quantification of microplastic fibers released to water
2024-Jul-01, Water research
IF:11.4Q1
DOI:10.1016/j.watres.2024.121758
PMID:38761592
|
研究论文 | 该论文提出了一种基于无透镜阴影显微镜的快速分析策略,用于有效量化水中释放的微塑料纤维 | 论文创新提出了结合高分辨率无透镜阴影显微镜与深度学习算法的快速成像和自动计数方法,从而显著提升了微塑料纤维的检测速度和准确性 | 研究中未涉及高效样本分离和全面样本图像数据库的创建 | 研究旨在提高对水中微塑料纤维污染的快速量化能力 | 研究对象是水中释放的微塑料纤维 | 数字病理 | NA | 无透镜阴影显微镜,深度学习算法 | NA | 图像 | NA |
1230 | 2024-08-05 |
Discriminative diagnosis of ovarian endometriosis cysts and benign mucinous cystadenomas based on the ConvNeXt algorithm
2024-Jul, European journal of obstetrics, gynecology, and reproductive biology
DOI:10.1016/j.ejogrb.2024.05.010
PMID:38756053
|
研究论文 | 本研究旨在开发一个深度学习模型,利用ConvNeXt算法有效区分卵巢内膜异位囊肿和良性粘液性囊腺瘤 | 该深度学习模型提供了一种新的临床方法,以高准确度区分卵巢内膜异位囊肿和良性粘液性囊腺瘤 | 本研究的回顾性分析可能受限于数据的选择偏倚 | 旨在通过分析超声图像开发一个有效的深度学习模型用于卵巢内膜异位囊肿和良性粘液性囊腺瘤的诊断 | 研究对象为184名被诊断为卵巢内膜异位囊肿或良性粘液性囊腺瘤的患者 | 数字病理学 | 卵巢内膜异位症 | 深度学习,ConvNeXt算法 | 深度学习模型 | 超声图像 | 786幅超声图像,来自184名患者 |
1231 | 2024-08-05 |
Multi-center Dose Prediction Using Attention-aware Deep learning Algorithm Based on Transformers for Cervical Cancer Radiotherapy
2024-Jul, Clinical oncology (Royal College of Radiologists (Great Britain))
DOI:10.1016/j.clon.2024.03.022
PMID:38631974
|
研究论文 | 提出了一种基于Transformer的AtTranNet算法用于宫颈癌放射治疗中的剂量预测 | 开发了针对多个中心的数据集的深度学习算法,能够快速、准确地进行剂量预测 | 该研究可能无法覆盖所有类型的治疗方案和癌症患者的特征 | 开发一种强大的深度学习算法以实现宫颈癌体积调制弧治疗的剂量准确预测 | 367名宫颈癌患者和70名不同处方的子宫内膜癌患者 | 数字病理学 | 宫颈癌 | 深度学习 | Transformer | 医学影像数据 | 共367名宫颈癌患者和70名子宫内膜癌患者 |
1232 | 2024-08-05 |
Prediction and visualization of moisture content in Tencha drying processes by computer vision and deep learning
2024-Jul, Journal of the science of food and agriculture
IF:3.3Q2
DOI:10.1002/jsfa.13381
PMID:38349009
|
研究论文 | 本文利用计算机视觉和深度学习技术检测Tencha干燥过程中的水分含量 | 将计算机视觉与一维卷积神经网络相结合,新颖地实现了对Tencha干燥过程水分含量的预测与可视化 | 研究未提及样本多样性和外部验证的范围 | 旨在提高Tencha干燥过程中水分含量的监测和控制 | Tencha干燥过程中的水分含量 | 计算机视觉 | NA | 深度学习 | 一维卷积神经网络(1D-CNN) | 图像 | NA |
1233 | 2024-08-05 |
Time series prediction of insect pests in tea gardens
2024-Jul, Journal of the science of food and agriculture
IF:3.3Q2
DOI:10.1002/jsfa.13393
PMID:38372506
|
研究论文 | 该研究探讨了在茶园中白蝴蝶种群的时间序列预测。 | 研究使用了三种深度学习算法进行茶园虫害的时间序列预测,特别强调了LSTM-Attention的效果。 | 对深度学习算法在茶园虫害预测中的应用研究仍然有限。 | 研究茶园中虫害的时间序列预测,以确保茶叶质量。 | 主要研究对象是茶园中的白蝴蝶种群。 | 机器学习 | NA | 深度学习 | LSTM-Attention, LSTM, Informer | 时间序列数据 | NA |
1234 | 2024-08-05 |
nBEST: Deep-learning-based non-human primates Brain Extraction and Segmentation Toolbox across ages, sites and species
2024-Jul-15, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2024.120652
PMID:38797384
|
研究论文 | 本研究提出了一个针对非人类灵长类动物脑部MRI的深度学习处理工具nBEST | nBEST通过终身学习和创新的3D U-NeXt架构,能够灵活整合来自不同NHP种群的数据 | 无明确限制信息 | 开发专为非人类灵长类动物设计的脑部MRI处理工具 | 1,469个来自11种不同NHP的脑部MRI扫描数据 | 计算机视觉 | 无明确疾病类别 | 深度学习 | 3D U-NeXt | MRI图像 | 1,469个扫描,涉及11种(如猕猴、枭猴、黑猩猩等) |
1235 | 2024-08-05 |
Histological tissue classification with a novel statistical filter-based convolutional neural network
2024-Jul, Anatomia, histologia, embryologia
DOI:10.1111/ahe.13073
PMID:38868912
|
研究论文 | 本文提出了一种新的基于统计滤波器的卷积神经网络用于组织分类 | 提出了一种HistStatCNN模型,通过统计方法初始化卷积核以提高图像分类的性能 | 该研究可能受限于所使用的数据集,可能不适用于所有类型的组织图像 | 旨在提高图像分类任务中的准确性和效率 | 研究对象为新型组织学数据集及多个组织病理基准数据集 | 数字病理学 | NA | 卷积神经网络(CNN) | HistStatCNN | 图像 | 使用了多个组织病理基准数据集和一个新组织学数据集进行评估 |
1236 | 2024-08-05 |
Radiological age assessment based on clavicle ossification in CT: enhanced accuracy through deep learning
2024-Jul, International journal of legal medicine
IF:2.2Q1
DOI:10.1007/s00414-024-03167-6
PMID:38286953
|
研究论文 | 本文提出了一种基于胸部CT中锁骨骨化的深度学习年龄评估方法 | 通过深度学习方法实现了对锁骨骨化的连续年龄评估,克服了传统方法的准确性限制 | 模型性能可能受个体变异或病理状况的影响 | 研究通过深度学习提高CT影像在年龄评估中的准确性 | 分析了1,935名患者的胸部CT扫描影像数据 | 计算机视觉 | NA | 深度学习 | NA | 影像 | 训练集包含4,400个扫描来自1,935名患者,测试集包含300个扫描来自300名患者 |
1237 | 2024-08-05 |
Automatic and robust estimation of sex and chronological age from panoramic radiographs using a multi-task deep learning network: a study on a South Korean population
2024-Jul, International journal of legal medicine
IF:2.2Q1
DOI:10.1007/s00414-024-03204-4
PMID:38467754
|
研究论文 | 本研究利用多任务深度学习网络自动和稳健地从全景X光片中估计性别和年龄。 | 提出了一种名为ForensicNet的网络,包含性别和年龄关注分支,以学习全景X光片的解剖上下文特征。 | 研究可能存在数据偏差的问题,虽然使用的数据集已相对均衡。 | 旨在提高全景X光片中性别和年龄估计的准确性和自动化水平。 | 使用来自韩国人群的13200张全景X光片进行研究,涵盖不同性别和年龄段。 | 数字病理学 | NA | 深度学习 | 多任务深度学习网络 | 图像 | 13200张图像,每个性别和年龄范围各100张 |
1238 | 2024-08-05 |
Pediatric tympanostomy tube assessment via deep learning
2024 Jul-Aug, American journal of otolaryngology
IF:1.8Q2
DOI:10.1016/j.amjoto.2024.104334
PMID:38723380
|
研究论文 | 本文研究了使用深度学习算法评估儿童鼓膜腔管的有效性 | 开发了一种基于深度学习的算法,能够高效识别儿童耳中鼓膜腔管的存在与否 | 研究样本数量相对较小,仅涉及28名受试者 | 比较人工智能算法与临床人员评估耳中鼓膜腔管存在的有效性 | 具有鼓膜腔管历史的10个月到10岁儿童 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 28名儿童,共123张图像 |
1239 | 2024-08-05 |
A deep learning-based approach for efficient detection and classification of local Ca²⁺ release events in Full-Frame confocal imaging
2024-Jul, Cell calcium
IF:4.3Q2
DOI:10.1016/j.ceca.2024.102893
PMID:38701707
|
研究论文 | 本文提出了一种基于深度学习的方法,用于有效检测和分类局部钙释放事件 | 创新性地应用深度学习技术自动检测和分类局部钙释放事件 | 分析过程依赖于特定的成像数据,可能不适用于其他类型的成像技术 | 研究局部钙释放事件的检测和分类以促进细胞内钙信号的理解 | 孤立心肌细胞中的局部钙释放事件 | 数字病理学 | NA | 深度学习 | NA | 成像数据 | NA |
1240 | 2024-08-05 |
Efficacy of the methods of age determination using artificial intelligence in panoramic radiographs - a systematic review
2024-Jul, International journal of legal medicine
IF:2.2Q1
DOI:10.1007/s00414-024-03162-x
PMID:38400923
|
系统评价 | 本文系统评价了人工智能在全景放射片中年龄判定方法的有效性 | 探讨了人工智能与传统手动方法在年龄判定中的显著差异 | 研究中缺乏对深度学习和机器学习模型或手动模型进行比较 | 研究人工智能在全景放射片年龄判定中的应用效果 | 分析包含36篇文献的年龄判定方法 | 计算机视觉 | NA | 人工智能 | 深度学习,机器学习 | 全景放射片 | 36篇文献 |