本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1301 | 2024-08-07 |
A practical guide to the implementation of artificial intelligence in orthopaedic research-Part 2: A technical introduction
2024-Jul, Journal of experimental orthopaedics
IF:2.0Q2
DOI:10.1002/jeo2.12025
PMID:38715910
|
研究论文 | 本文为骨科研究中人工智能实施的实用指南第二部分,介绍了人工智能技术的基本原理和应用 | 探讨了神经网络和深度学习架构在复杂医疗数据分析中的应用,以及自然语言处理在医疗文本分类和临床决策支持中的潜力 | NA | 为骨科研究人员提供参与人工智能驱动研究所需的基本技术知识 | 骨科研究中的人工智能技术 | 机器学习 | NA | 机器学习, 神经网络, 深度学习, 自然语言处理 | CNN, LSTM, GAN | 文本, 图像 | NA |
1302 | 2024-08-07 |
Design and evaluation of a deep learning-based automatic segmentation of maxillary and mandibular substructures using a 3D U-Net
2024-Jul, Clinical and translational radiation oncology
IF:2.7Q2
DOI:10.1016/j.ctro.2024.100780
PMID:38712013
|
研究论文 | 本文设计并评估了一种基于3D U-Net深度学习模型的上颌和下颌亚结构自动分割方法 | 该模型能够高效准确地分割上颌和下颌的亚结构,特别是在处理金属伪影的CT扫描中表现出良好的性能 | 上颌亚结构的分割指标略低于下颌亚结构 | 旨在提高头颈部癌症患者放射治疗计划中颌骨亚结构的分割准确性和效率 | 上颌和下颌的12个亚结构 | 计算机视觉 | 头颈部癌症 | 3D U-Net | U-Net | CT扫描图像 | 82例头颈部癌症患者的CT扫描用于模型开发,20例独立CT扫描用于评估 |