本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2025-05-31 |
AlphaFold2 Reveals Structural Patterns of Seasonal Haplotype Diversification in SARS-CoV-2 Nucleocapsid Protein Variants
2024-08-25, Viruses
DOI:10.3390/v16091358
PMID:39339835
|
研究论文 | 利用AlphaFold2揭示SARS-CoV-2核衣壳蛋白变体的季节性单倍型多样化结构模式 | 首次将AlphaFold2应用于SARS-CoV-2核衣壳蛋白变体的结构模式分析,揭示了内在无序区域在病毒进化中的重要性 | 研究依赖于计算模型预测的蛋白质结构,而非实验验证的实际结构 | 探究SARS-CoV-2变体的起源和进化机制 | SARS-CoV-2核衣壳蛋白(N蛋白)的22种单倍型 | 计算生物学 | COVID-19 | AlphaFold2, 从头计算方法, 数据挖掘 | AlphaFold2 | 蛋白质序列和结构数据 | 22种单倍型(来自GISAID数据库截至2023年7月23日的数据) |
2 | 2025-05-31 |
Accurate prediction of protein function using statistics-informed graph networks
2024-Aug-04, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-50955-0
PMID:39097570
|
研究论文 | 提出了一种利用统计信息图网络仅从蛋白质序列预测蛋白质功能的方法 | 该方法无需结构信息即可预测蛋白质功能,并通过进化特征量化评估执行特定功能的残基重要性 | NA | 预测蛋白质功能以支持医学、生物技术和药物开发领域的研究 | 蛋白质序列 | 生物信息学 | NA | 统计信息图网络 | 图网络 | 序列数据 | 超过2亿个未表征的蛋白质 |
3 | 2025-05-31 |
Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction
2024-Aug, Nature genetics
IF:31.7Q1
DOI:10.1038/s41588-024-01831-6
PMID:38977853
|
research paper | 介绍了一种名为REGLE的无监督深度学习模型,用于发现高维临床数据(HDCD)与遗传变异之间的关联 | REGLE利用变分自编码器计算HDCD的非线性解缠结嵌入,这些嵌入作为全基因组关联研究(GWAS)的输入,能够发现现有专家定义特征未捕获的特征,并在标记数据极少的数据集中构建准确的疾病特异性多基因风险评分(PRSs) | NA | 改进高维临床数据的遗传发现和疾病预测 | 高维临床数据(HDCD) | machine learning | respiratory and circulatory diseases | variational autoencoders, GWAS | variational autoencoders | clinical data | biobank-scale datasets |
4 | 2025-05-29 |
Predictive models and applicability of artificial intelligence-based approaches in drug allergy
2024-Aug-01, Current opinion in allergy and clinical immunology
IF:3.0Q3
DOI:10.1097/ACI.0000000000001002
PMID:38814733
|
review | 本文综述了预测模型和人工智能在药物过敏诊断中的潜在应用 | 探讨了人工智能技术(如机器学习和深度学习)在药物过敏诊断中的新兴应用 | 现有的药物过敏预测模型较少,且多采用逻辑回归分析,缺乏多样性 | 评估预测模型和人工智能在药物过敏诊断和管理中的效用 | 药物过敏患者 | machine learning | drug allergy | machine learning, deep learning, artificial neural networks | logistic regression, artificial neural networks | clinical data | NA |
5 | 2025-05-22 |
Foundation model of neural activity predicts response to new stimulus types and anatomy
2024-Aug-31, bioRxiv : the preprint server for biology
DOI:10.1101/2023.03.21.533548
PMID:36993435
|
research paper | 该研究通过训练一个基础模型来预测小鼠视觉皮层对任意自然视频的神经元响应,并展示了该模型在新小鼠和新刺激域中的泛化能力 | 利用基础模型预测神经元响应,并展示其在跨小鼠、跨刺激域及新任务中的泛化能力 | 模型在训练分布之外的泛化能力仍有局限 | 构建基础大脑模型,以理解大脑的计算目标和神经编码 | 小鼠视觉皮层的神经活动 | neuroscience | NA | deep learning | foundation model | neural activity data, natural videos | 大量来自多只小鼠视觉皮层的神经活动数据 |
6 | 2025-05-21 |
Fragment-Fusion Transformer: Deep Learning-Based Discretization Method for Continuous Single-Cell Raman Spectral Analysis
2024-08-23, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c00149
PMID:38934798
|
研究论文 | 提出了一种名为片段融合Transformer的模型,用于连续单细胞拉曼光谱数据的离散化分析 | 该模型首次将基于光谱内在特征的离散化分段与Transformer结合,通过金字塔设计结构融合片段间特征,显著提升了特征提取的信息增益和熵 | 未明确说明模型在不同类型光谱数据上的泛化能力 | 解决连续拉曼光谱数据缺乏离散化方法而限制深度学习算法应用的问题 | 单细胞拉曼光谱数据 | 机器学习 | NA | 拉曼光谱 | Transformer | 光谱数据 | 未明确说明具体样本数量 |
7 | 2025-05-21 |
Strain-Temperature Dual Sensor Based on Deep Learning Strategy for Human-Computer Interaction Systems
2024-08-23, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c01202
PMID:39068608
|
研究论文 | 本研究开发了一种基于热电水凝胶的应变-温度双传感器,结合深度学习策略,用于人机交互系统 | 利用Hofmeister效应和热电电流效应制备了具有高韧性和温度响应性的热电水凝胶,并通过深度学习实现了高精度的机器人手反馈机制 | NA | 开发用于高温高风险场景的人机交互系统,提高安全系数 | 热电水凝胶传感器及其在人机交互系统中的应用 | 人机交互 | NA | Hofmeister效应、热电电流效应、深度学习 | 深度学习 | 应变和温度数据 | NA |
8 | 2025-05-21 |
Deep-Learning-Guided Electrochemical Impedance Spectroscopy for Calibration-Free Pharmaceutical Moisture Content Monitoring
2024-08-23, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c01180
PMID:39096505
|
研究论文 | 本研究探讨了使用电化学阻抗谱结合深度学习技术,实现药品粉末水分含量的快速、准确且无需校准的监测方法 | 首次将深度学习技术应用于电化学阻抗谱数据处理,实现了无需校准的高精度水分含量监测 | 研究尚未在实际工业生产环境中进行大规模验证 | 开发一种无需校准的药品水分含量快速监测技术 | 药品粉末 | 机器学习 | NA | 电化学阻抗谱(EIS) | 1DCNN | 光谱数据 | 未明确提及具体样本数量 |
9 | 2025-05-21 |
Deep Learning Enabled Universal Multiplexed Fluorescence Detection for Point-of-Care Applications
2024-08-23, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c00860
PMID:39010300
|
research paper | 本文介绍了一种紧凑、无透镜且成本效益高的荧光传感装置,结合机器学习实现可扩展的多重荧光检测 | 利用低成本光学组件和预训练机器学习模型实现无需光学调整的多重荧光检测,其多重检测能力可通过更新机器学习模型轻松扩展 | NA | 开发便携式、紧凑且可多重检测的荧光传感系统 | 多重荧光检测系统 | machine learning | respiratory viruses | Loop-Mediated Isothermal Amplification (LAMP) | pretrained ML model | fluorescence data | NA |
10 | 2025-05-21 |
Rapid Identification of Drug Mechanisms with Deep Learning-Based Multichannel Surface-Enhanced Raman Spectroscopy
2024-08-23, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c01205
PMID:39138903
|
研究论文 | 开发了一种基于深度学习的多通道表面增强拉曼光谱技术,用于快速识别化疗药物的作用机制 | 结合多通道表面增强拉曼散射传感器阵列和深度学习技术,实现了对多种化疗药物作用机制的高精度快速识别 | 未提及具体样本量及药物种类数量,可能影响方法的普适性验证 | 开发快速识别化疗药物作用机制的新方法 | 化疗药物及其对细胞分子变化的影响 | 机器学习 | 癌症 | 表面增强拉曼散射(SERS)、深度学习 | CNN | 光谱数据 | NA |
11 | 2025-05-14 |
Early Multimodal Data Integration for Data-Driven Medical Research - A Scoping Review
2024-08-30, Studies in health technology and informatics
DOI:10.3233/SHTI240837
PMID:39234706
|
综述 | 本文通过范围综述分析了2019年至2024年间21篇关于早期多模态数据整合方法的文献,总结了这些方法的特点及其在数据驱动医学研究中的应用 | 将早期多模态数据整合方法分为四类,并总结了各类方法的特点,为数据驱动医学研究项目中选择最佳方法组合提供了参考 | 主要关注结构性整合,未深入比较早期和晚期多模态数据整合方法,且整合流程通常需要手动优化 | 探讨早期多模态数据整合方法在数据驱动医学研究中的应用和优化 | 21篇关于早期多模态数据整合方法的综述文献 | 数据驱动医学研究 | NA | 多模态数据整合方法,包括基本连接和深度学习等 | NA | 多模态数据 | 21篇综述文献 |
12 | 2025-05-12 |
Precision in Prevention and Health Surveillance: How Artificial Intelligence May Improve the Time of Identification of Health Concerns through Social Media Content Analysis
2024-Aug, Yearbook of medical informatics
DOI:10.1055/s-0044-1800736
PMID:40199301
|
研究论文 | 探讨人工智能通过社交媒体内容分析如何提升预防和健康监测的精确性 | 利用AI技术分析社交媒体数据,提高健康问题的及时性和准确性识别 | 需解决伦理和隐私问题以确保负责任和有效的实施 | 提升预防和健康监测的精确性 | 社交媒体内容 | 自然语言处理 | NA | 机器学习、自然语言处理(NLP)、深度学习 | transformer-based topic modelling、federated learning | 文本 | 89篇文章,最终筛选10篇相关研究 |
13 | 2025-05-12 |
Year 2023 in Biomedical Natural Language Processing: a Tribute to Large Language Models and Generative AI
2024-Aug, Yearbook of medical informatics
DOI:10.1055/s-0044-1800751
PMID:40199311
|
综述 | 本文回顾了2023年生物医学自然语言处理领域的研究进展,重点介绍了大型语言模型和生成式AI的应用 | 总结了2023年NLP领域的两篇最佳论文,分析了当前研究趋势,包括数据增强、领域特定模型适应和模型蒸馏等创新点 | 仅涵盖2023年发表的论文,可能无法反映更长期的研究趋势 | 评估2023年生物医学自然语言处理领域的研究进展和趋势 | 2023年发表的2,148篇生物医学NLP相关论文 | 自然语言处理 | COVID-19, 癌症, 心理健康 | ChatGPT, 大型语言模型 | 大型语言模型 | 社交媒体内容, 电子健康记录 | 2,148篇论文 |
14 | 2025-05-07 |
Forecasting daily total pollen concentrations on a global scale
2024-Aug, Allergy
IF:12.6Q1
DOI:10.1111/all.16227
PMID:38995241
|
研究论文 | 该研究使用CatBoost和深度学习模型预测全球23个城市未来14天的每日总花粉浓度 | 首次在全球范围内应用CatBoost和深度学习模型进行花粉浓度预测,并分析了影响预测的关键环境变量 | 部分城市预测效果较差(如布里斯班和首尔),模型在不同城市的表现差异较大 | 提高空气花粉预测的准确性以应对气候变化带来的影响 | 全球23个城市的花粉浓度数据 | 机器学习 | 过敏性疾病 | CatBoost和深度学习 | CB和DL | 环境参数和花粉浓度数据 | 23个城市的数据 |
15 | 2025-05-07 |
Fully Automatic Quantitative Measurement of Equilibrium Radionuclide Angiocardiography Using a Convolutional Neural Network
2024-Aug-01, Clinical nuclear medicine
IF:9.6Q1
DOI:10.1097/RLU.0000000000005275
PMID:38967505
|
研究论文 | 本研究旨在利用卷积神经网络从平衡放射性核素血管造影数据集中生成深度学习感兴趣区域(ROIs),用于左心室射血分数(LVEF)测量 | 使用2D U-Net卷积神经网络架构自动生成深度学习ROIs,减少了观察者间的变异性,提高了LVEF测量的便利性和可重复性 | 研究仅基于特定医疗中心的数据,可能无法完全代表其他医疗环境的情况 | 开发一种自动测量左心室射血分数的方法,提高测量的准确性和效率 | 平衡放射性核素血管造影数据集 | 数字病理 | 心血管疾病 | 平衡放射性核素血管造影 | 2D U-Net CNN | 医学影像 | 41,462次扫描(来自19,309名患者) |
16 | 2025-05-02 |
Predicting the Outcome and Survival of Patients with Spinal Cord Injury Using Machine Learning Algorithms: A Systematic Review
2024-08, World neurosurgery
IF:1.9Q2
DOI:10.1016/j.wneu.2024.05.103
PMID:38796146
|
系统综述 | 本文通过系统综述评估了机器学习算法在脊髓损伤(SCI)患者诊断和预后预测中的表现 | 总结了机器学习在SCI领域的应用潜力,特别是在诊断和预后预测方面的效果 | 需要进一步研究深度学习算法在急性SCI诊断中的应用 | 评估机器学习算法在脊髓损伤患者诊断和预后预测中的性能 | 脊髓损伤患者 | 机器学习 | 脊髓损伤 | 机器学习算法 | ML和DL算法 | 临床数据 | 9424名被诊断为脊髓损伤的患者 |
17 | 2025-05-02 |
Usefulness of Artificial Intelligence in Traumatic Brain Injury: A Bibliometric Analysis and Mini-review
2024-08, World neurosurgery
IF:1.9Q2
DOI:10.1016/j.wneu.2024.05.065
PMID:38759786
|
综述 | 本文通过文献计量分析和迷你综述,探讨了人工智能在创伤性脑损伤(TBI)中的主要应用 | 结合文献计量分析和迷你综述,全面评估了人工智能在TBI领域的研究进展和应用潜力 | 主要基于Scopus数据库的文献,可能未涵盖所有相关研究 | 评估人工智能在创伤性脑损伤领域的应用和研究趋势 | 创伤性脑损伤(TBI)相关的科学出版物 | 人工智能 | 创伤性脑损伤 | 文献计量分析、知识图谱分析 | NA | 文献数据 | 495篇科学出版物(2000-2023年) |
18 | 2025-05-01 |
Accurate, automated classification of radiographic knee osteoarthritis severity using a novel method of deep learning: Plug-in modules
2024-Aug-13, Knee surgery & related research
IF:4.1Q1
DOI:10.1186/s43019-024-00228-3
PMID:39138550
|
研究论文 | 开发了一种基于深度学习的自动膝关节骨关节炎严重程度分类模型 | 使用插件模块(PIM)提升细粒度分类任务的性能,优于之前的深度学习模型 | 未来仍需改进,模型在KL等级1的分类准确率较低(43%) | 开发自动膝关节骨关节炎严重程度分类模型 | 膝关节骨关节炎的X光片 | 计算机视觉 | 骨关节炎 | 深度学习 | CNN或transformer-based网络与PIM模块集成 | 图像 | 训练集:Osteoarthritis Initiative数据集;测试集:17,040例(Multicenter Osteoarthritis Study) |
19 | 2025-04-26 |
Quantitative Three-Dimensional Imaging Analysis of HfO2 Nanoparticles in Single Cells via Deep Learning Aided X-ray Nano-Computed Tomography
2024-08-20, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.4c06953
PMID:39115329
|
研究论文 | 本研究开发了一种基于深度学习的X射线纳米计算机断层扫描方法,用于定量分析单细胞内HfO2纳米颗粒的三维分布 | 提出了一种模块化和自动化的深度学习方法,用于高灵敏度分析单细胞内的超小金属纳米颗粒,并构建了定位定量分析方法 | 方法可能仍受限于X射线纳米计算机断层扫描的时间消耗和需要专业知识 | 开发一种定量分析单细胞内纳米药物三维分布的方法,以理解药物作用机制 | 人乳腺癌细胞系(MCF-7)和HfO2纳米颗粒 | 数字病理学 | 乳腺癌 | X射线纳米计算机断层扫描(Nano-CT) | 深度学习 | 3D图像 | 未明确提及具体样本数量,但研究对象为单细胞和3D肿瘤球体 |
20 | 2025-04-26 |
Sága, a Deep Learning Spectral Analysis Tool for Fungal Detection in Grains-A Case Study to Detect Fusarium in Winter Wheat
2024-08-13, Toxins
IF:3.9Q1
DOI:10.3390/toxins16080354
PMID:39195764
|
研究论文 | 开发了一种名为Sága的深度学习光谱分析工具,用于检测谷物中的真菌感染,特别是冬小麦中的镰刀菌 | 结合成像光谱和深度学习技术,开发了用于现场检测小麦赤霉病的预测模型Sága,实现了高精度的感染区域检测 | 研究仅基于2021年的实验田数据,未涉及更广泛的地理区域和不同年份的数据验证 | 开发一种可靠的现场特异性镰刀菌感染早期预警模型,以确保食品和饲料安全 | 冬小麦中的镰刀菌感染 | 数字病理 | 植物病害 | 成像光谱 | YOLOv5, DeepMAC, XGBoost | 高光谱图像 | 实验田(52.5米×3米)和对照田(52.5米×3米) |