本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 261 | 2024-11-22 |
Deep Learning-Based Synthetic Skin Lesion Image Classification
2024-Aug-22, Studies in health technology and informatics
DOI:10.3233/SHTI240612
PMID:39176583
|
研究论文 | 本研究提出了一种基于改进的VGG16算法来识别AI生成的医学图像 | 使用生成对抗网络(GAN)生成合成皮肤病变图像,并开发了一种增强的VGG16算法来分类真实图像与AI生成的图像 | 未提及 | 分析生成的医学图像的有效性 | 合成皮肤病变图像与真实图像的分类 | 计算机视觉 | NA | 生成对抗网络(GAN) | VGG16 | 图像 | 10,000张合成皮肤病变图像 | NA | NA | NA | NA |
| 262 | 2024-11-21 |
Evaluation of deep-learning TSE images in clinical musculoskeletal imaging
2024-Aug, Journal of medical imaging and radiation oncology
IF:2.2Q2
DOI:10.1111/1754-9485.13714
PMID:38837669
|
研究论文 | 本研究比较了传统重建的脂肪饱和(FS)和非FS涡轮自旋回波(TSE)磁共振成像与基于深度学习的加速TSE(DL-TSE)重建在膝关节成像中的效果 | DL-TSE重建在提高图像分辨率和缩短扫描时间的同时,保持了图像对比度,且在大多数情况下被放射科医生认为具有更好的小结构显示效果 | DL-TSE在21/232(9%)的病例中被认为效果不如传统TSE | 评估基于深度学习的TSE图像在临床肌肉骨骼成像中的应用效果 | 脂肪饱和和非脂肪饱和的TSE磁共振成像与基于深度学习的TSE重建图像 | 计算机视觉 | NA | 磁共振成像 | 深度学习 | 图像 | 232对传统TSE和DL-TSE图像 | NA | NA | NA | NA |
| 263 | 2024-11-20 |
Remote assessment of cognition and quality of life following radiotherapy for nasopharyngeal carcinoma: deep-learning-based predictive models and MRI correlates
2024-Aug, Journal of cancer survivorship : research and practice
IF:3.1Q1
DOI:10.1007/s11764-023-01371-8
PMID:37010777
|
研究论文 | 研究利用深度学习模型预测鼻咽癌放疗后患者的认知功能和生命质量,并探讨其与MRI变化的关系 | 首次使用深度学习技术开发预测模型,通过远程评估预测鼻咽癌放疗后患者的认知功能受损情况 | 样本量较小,仅包括70名患者 | 开发预测模型以评估鼻咽癌放疗后患者的认知功能受损情况,并探讨其与生命质量和MRI变化的关系 | 鼻咽癌放疗后患者的认知功能和生命质量 | 机器学习 | 鼻咽癌 | 深度学习 | 深度神经网络 (DNN) | MRI图像和认知评估数据 | 70名患者 | NA | NA | NA | NA |
| 264 | 2024-11-17 |
Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN
2024-Aug, Nature methods
IF:36.1Q1
DOI:10.1038/s41592-024-02210-z
PMID:38459385
|
研究论文 | 本文扩展了cryoDRGN深度学习架构,用于从冷冻电子子层析图中学习结构异质性 | 开发了新的工具tomoDRGN,能够学习并重建冷冻电子层析数据中的异质性结构集合 | NA | 研究冷冻电子层析技术中的结构异质性 | 冷冻电子层析数据中的结构异质性 | 计算机视觉 | NA | 冷冻电子层析 | 深度学习 | 图像 | 使用模拟和实验数据进行验证 | NA | NA | NA | NA |
| 265 | 2024-11-15 |
Imputation of cancer proteomics data with a deep model that learns from many datasets
2024-Aug-28, bioRxiv : the preprint server for biology
DOI:10.1101/2024.08.26.609780
PMID:39253518
|
研究论文 | 本文介绍了一种基于深度学习的方法Lupine,用于填补癌症蛋白质组学数据中的缺失值 | Lupine是首个能够从多个数据集中联合学习的缺失值填补方法,并提供了证据表明这种方法能提高预测的准确性 | NA | 解决质谱蛋白质组学数据中缺失值的问题,提高数据分析的可靠性和统计能力 | 癌症患者的蛋白质组学数据,涵盖十种癌症类型 | 蛋白质组学 | 癌症 | 质谱技术 | 深度学习模型 | 蛋白质组学数据 | 超过1000个癌症患者样本 | NA | NA | NA | NA |
| 266 | 2024-11-15 |
Deep learning-derived splenic radiomics, genomics, and coronary artery disease
2024-Aug-20, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.08.16.24312129
PMID:39185532
|
研究论文 | 本研究利用深度学习技术从腹部MRI中提取脾脏的放射组学特征,并结合基因组学分析,探讨脾脏在冠状动脉疾病中的作用 | 首次将深度学习与基因组学结合,揭示了脾脏在冠状动脉疾病中的潜在作用,并提供了9p21区域机制的新见解 | NA | 探讨脾脏在冠状动脉疾病中的作用及其遗传机制 | 脾脏的放射组学特征与冠状动脉疾病的关系 | 数字病理学 | 心血管疾病 | 深度学习、放射组学、全基因组关联分析 | 深度学习模型 | 图像 | 42,059名UK Biobank参与者 | NA | NA | NA | NA |
| 267 | 2024-11-13 |
Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data
2024-08, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2024.104680
PMID:38914411
|
研究论文 | 本研究开发了一种基于深度学习算法的模型,用于预测手术期间的大量输血 | 利用非侵入性的生物信号波形实时预测手术期间的大量输血 | 本研究为回顾性研究,且仅在两家医院进行了验证 | 开发一种能够在手术期间提前10分钟预测大量输血的模型,以减少并发症和死亡率 | 手术期间的大量输血预测 | 机器学习 | NA | 深度学习算法 | 深度学习模型 | 生物信号波形 | 18,135名患者用于模型开发和内部验证,621名患者用于外部验证 | NA | NA | NA | NA |
| 268 | 2024-11-08 |
Analyzing Wav2Vec 1.0 Embeddings for Cross-Database Parkinson's Disease Detection and Speech Features Extraction
2024-Aug-26, Sensors (Basel, Switzerland)
DOI:10.3390/s24175520
PMID:39275431
|
研究论文 | 研究使用未微调的wav2vec 1.0架构进行跨数据库的帕金森病检测和语音特征提取 | wav2vec 1.0在跨数据库分类和回归任务中表现出色,特别是在检测帕金森病和预测语音特征方面,显示出比传统特征提取方法更高的准确性 | 研究主要集中在跨数据库的分类和回归任务上,未涉及其他类型的语音数据或任务 | 分析wav2vec 1.0嵌入在跨数据库帕金森病检测和语音特征提取中的应用 | 帕金森病患者的语音数据 | 机器学习 | 神经退行性疾病 | wav2vec 1.0 | 机器学习模型 | 语音数据 | 三个多语言帕金森病数据集 | NA | NA | NA | NA |
| 269 | 2024-11-08 |
[Research status and prospect of the application of artificial intelligence in the acupuncture and moxibustion field based on bibliometric]
2024-Aug-12, Zhongguo zhen jiu = Chinese acupuncture & moxibustion
|
综述 | 通过文献计量方法探讨人工智能在针灸领域应用的研究热点、发展趋势及存在的问题 | 分析了人工智能技术在针灸诊断治疗、疗效预测、教学及智能设备开发等方面的应用 | 人工智能在针灸领域的应用研究处于初步发展阶段,未来需加强团队间的交流与合作,进一步探索符合针灸诊疗特点的人工智能系统 | 探讨人工智能在针灸领域应用的研究热点、发展趋势及存在的问题 | 人工智能在针灸领域的应用 | NA | NA | 机器学习、神经网络、深度学习、数据挖掘 | NA | 文献 | 共纳入443篇中文文章和68篇英文文章 | NA | NA | NA | NA |
| 270 | 2024-11-08 |
A systematic literature review on the significance of deep learning and machine learning in predicting Alzheimer's disease
2024-08, Artificial intelligence in medicine
IF:6.1Q1
DOI:10.1016/j.artmed.2024.102928
PMID:39029377
|
综述 | 本文系统回顾了深度学习和机器学习在阿尔茨海默病预测中的应用 | NA | NA | 调查不同阿尔茨海默病检测技术、数据集、输入模态、算法、库和性能评估指标,以确定哪种模型或策略可能提供更优越的性能 | 阿尔茨海默病的检测技术、数据集、输入模态、算法、库和性能评估指标 | 机器学习 | 阿尔茨海默病 | 磁共振成像 (MRI)、正电子发射断层扫描 (PET)、APOe4 基因型、扩散张量成像 (DTI) 和脑脊液 (CSF) 生物标志物 | 卷积神经网络 (CNN)、支持向量机 (SVM) | 图像 | 100 篇研究文章 | NA | NA | NA | NA |
| 271 | 2024-11-02 |
Radiomic and deep learning analysis of dermoscopic images for skin lesion pattern decoding
2024-08-26, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-70231-x
PMID:39187551
|
研究论文 | 研究探讨了结合深度学习和放射组学的混合方法在非侵入性皮肤镜图像诊断皮肤病变中的有效性 | 提出了结合深度学习和放射组学的混合模型,显著提高了皮肤病变诊断的准确性 | NA | 探索非侵入性皮肤镜图像诊断皮肤病变的有效方法 | 皮肤镜图像中的皮肤病变模式 | 计算机视觉 | 皮肤病变 | 深度学习 | 混合模型 | 图像 | 分析了来自国际皮肤成像协作组织(ISIC)数据集的2016-2020年间的皮肤镜图像,涵盖了多种皮肤病变类型 | NA | NA | NA | NA |
| 272 | 2024-11-02 |
GastroFuse-Net: an ensemble deep learning framework designed for gastrointestinal abnormality detection in endoscopic images
2024-Aug-15, Mathematical biosciences and engineering : MBE
DOI:10.3934/mbe.2024300
PMID:39483096
|
研究论文 | 提出了一种名为GastroFuse-Net的深度学习框架,用于内窥镜图像中的胃肠道异常检测 | 结合了两种不同层数的CNN模型,提取浅层和深层特征,以捕捉异常的多样性 | 未提及 | 开发一种自动诊断胃肠道疾病的深度学习模型,以减少人工检查的劳动强度和时间消耗 | 内窥镜图像中的胃肠道疾病 | 计算机视觉 | 胃肠道疾病 | 卷积神经网络(CNN) | GastroFuse-Net | 图像 | 使用了Kvasir数据集,包含根据结构、疾病或手术操作分类的图像 | NA | NA | NA | NA |
| 273 | 2024-11-02 |
Impact of an artificial intelligence based model to predict non-transplantable recurrence among patients with hepatocellular carcinoma
2024-08, HPB : the official journal of the International Hepato Pancreato Biliary Association
IF:2.7Q1
DOI:10.1016/j.hpb.2024.05.006
PMID:38796346
|
研究论文 | 本文开发了基于人工智能的模型来预测肝细胞癌患者肝切除术后不可移植的复发 | 本文创新性地使用了集成AI模型,结合术前和术后因素,显著提高了预测不可移植复发(NTR)的准确性 | 本文未详细讨论模型的泛化能力和在不同医疗环境中的适用性 | 开发和验证基于人工智能的模型,用于预测肝细胞癌患者肝切除术后不可移植的复发 | 肝细胞癌(HCC)患者肝切除术后不可移植的复发(NTR) | 机器学习 | 肝癌 | 机器学习和深度学习技术 | 集成AI模型 | 临床数据 | 1763名肝细胞癌患者 | NA | NA | NA | NA |
| 274 | 2024-11-02 |
An ingenious deep learning approach for pressure injury depth evaluation with limited data
2024-Aug, Journal of tissue viability
IF:2.4Q1
DOI:10.1016/j.jtv.2024.05.009
PMID:38825443
|
研究论文 | 本文提出了一种利用深度学习评估压疮深度的新方法,特别是在数据有限的情况下 | 开发了一种结合分类模型和二分类模型的高性能深度学习模型,能够在有限监督数据的情况下实现高准确性 | 分类模型在区分d1和d2时表现不佳,二分类模型在评估步骤增加时性能下降 | 开发一种在有限数据情况下评估压疮深度的高性能深度学习模型 | 压疮图像及其深度分类 | 机器学习 | NA | 深度学习 | 卷积神经网络 | 图像 | 414张压疮图像,分为五个深度阶段(d0到D4) | NA | NA | NA | NA |
| 275 | 2024-10-30 |
A review on advancements in feature selection and feature extraction for high-dimensional NGS data analysis
2024-Aug-19, Functional & integrative genomics
IF:3.9Q1
DOI:10.1007/s10142-024-01415-x
PMID:39158621
|
综述 | 本文综述了用于高维NGS数据分析的特征选择和特征提取技术的最新进展 | 本文系统比较了统计学、机器学习和深度学习方法在高维NGS数据特征选择和提取中的应用 | 本文主要基于文献综述,未提供具体的实验数据或模型评估 | 探讨高维NGS数据分析中特征选择和提取技术的应用 | 高维NGS数据和微阵列数据 | 生物信息学 | NA | NGS | NA | 基因组学、转录组学、蛋白质组学和宏基因组学数据 | NA | NA | NA | NA | NA |
| 276 | 2024-10-27 |
Towards equitable AI in oncology
2024-Aug, Nature reviews. Clinical oncology
DOI:10.1038/s41571-024-00909-8
PMID:38849530
|
研究论文 | 本文讨论了在肿瘤学中实现公平AI的必要性及其挑战 | 提出了开发公平AI工具的必要性,以确保其在不同患者群体中的准确性和可及性 | 现有临床数据集中多样性不足,临床验证方法不充分,以及模型开发中的潜在偏见 | 探讨如何在肿瘤学中实现公平AI | 肿瘤学中的AI工具及其在不同患者群体中的应用 | 机器学习 | NA | NA | 深度学习,特征工程 | 临床数据 | NA | NA | NA | NA | NA |
| 277 | 2024-10-24 |
Evaluation of a Deep Learning Based Approach to Computational Label Free Cell Viability Quantification
2024-Aug-30, bioRxiv : the preprint server for biology
DOI:10.1101/2024.08.29.610252
PMID:39257757
|
研究论文 | 研究使用深度学习方法进行无标记细胞活力定量分析的可行性 | 提出了一种基于深度学习的无标记细胞活力定量方法,避免了传统染色方法对细胞的毒性影响 | 尚未提及 | 探索使用深度学习算法进行无标记细胞活力定量分析的可行性 | 人类细胞的形态变化和细胞活力 | 计算机视觉 | NA | 深度学习 | Resnet CNN | 图像 | NA | NA | NA | NA | NA |
| 278 | 2024-10-24 |
Deep Learning-driven Automatic Nuclei Segmentation of Label-free Live Cell Chromatin-sensitive Partial Wave Spectroscopic Microscopy Imaging
2024-Aug-21, bioRxiv : the preprint server for biology
DOI:10.1101/2024.08.20.608885
PMID:39229026
|
研究论文 | 本文介绍了一种基于深度学习的无标记活细胞染色质敏感部分波光谱显微镜图像的自动细胞核分割方法 | 提出了一种基于卷积神经网络和注意力机制的U-Net模型,用于自动分割染色质敏感部分波光谱显微镜图像中的细胞核 | NA | 开发一种自动化的方法来准确分割染色质敏感部分波光谱显微镜图像中的细胞核,以提高后续染色质分析研究的可靠性 | 染色质敏感部分波光谱显微镜图像中的细胞核 | 计算机视觉 | NA | 部分波光谱显微镜 | U-Net | 图像 | HCT116细胞 | NA | NA | NA | NA |
| 279 | 2024-10-24 |
Towards Digital Quantification of Ploidy from Pan-Cancer Digital Pathology Slides using Deep Learning
2024-Aug-20, bioRxiv : the preprint server for biology
DOI:10.1101/2024.08.19.608555
PMID:39229200
|
研究论文 | 本文介绍了一种基于深度学习的肿瘤倍体量化方法PloiViT,通过数字病理切片直接进行快速且成本效益高的量化 | PloiViT是一种基于transformer的模型,优于传统的机器学习模型,并展示了在多个独立队列中的最佳预测性能 | NA | 开发一种快速且成本效益高的肿瘤倍体量化方法,作为下一代测序数据的补充 | 肿瘤倍体量化 | 数字病理 | NA | 深度学习 | transformer | 图像 | 训练数据集包括来自The Cancer Genome Atlas的十五种癌症类型,并在多个独立队列中验证了其性能 | NA | NA | NA | NA |
| 280 | 2024-10-24 |
Genetics of Cardiac Aging Implicate Organ-Specific Variation
2024-Aug-06, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.08.02.24310874
PMID:39148824
|
研究论文 | 研究使用视频深度学习模型分析心脏MRI数据,以预测心脏年龄并探讨心脏年龄加速的遗传因素 | 提出了一种基于视频的深度学习模型,使用心脏MRI数据中的心脏掩码来捕捉心脏衰老的丰富且特定于心脏的特征 | 当前方法在特征丰富度或心脏特异性方面存在局限,导致难以理解遗传对年龄加速的贡献 | 探讨心脏年龄加速的遗传因素及其与心脏结构和功能的关系 | 61,691名UK Biobank参与者的心脏MRI数据 | 机器学习 | 心血管疾病 | 深度学习 | 深度学习模型 | 视频 | 61,691名参与者 | NA | NA | NA | NA |