本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
261 | 2024-10-02 |
Coronary artery calcification and cardiovascular outcome as assessed by intravascular OCT and artificial intelligence
2024-Aug-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.524946
PMID:39347010
|
研究论文 | 本文提出了一种基于深度学习的方法,用于自动识别和量化冠状动脉钙化(CAC),并通过大规模的血管内光学相干断层扫描(OCT)数据进行验证 | 本文提出了一种新颖的深度学习方法,能够自动识别和量化冠状动脉钙化,并在大规模OCT数据上进行了训练和评估 | NA | 研究冠状动脉钙化与心血管不良事件之间的关系 | 冠状动脉钙化(CAC)及其与心血管不良事件的关联 | 计算机视觉 | 心血管疾病 | 光学相干断层扫描(OCT) | 深度学习 | 图像 | 1,106,291张OCT图像,来自1,048名患者 |
262 | 2024-10-01 |
DRpred: A Novel Deep Learning-Based Predictor for Multi-Label mRNA Subcellular Localization Prediction by Incorporating Bayesian Inferred Prior Label Relationships
2024-Aug-26, Biomolecules
IF:4.8Q1
DOI:10.3390/biom14091067
PMID:39334834
|
研究论文 | 提出了一种基于深度学习的mRNA亚细胞定位预测模型DRpred,结合贝叶斯推断的先验标签关系和神经网络进行预测 | DRpred通过贝叶斯网络捕捉标签间的依赖关系,并结合Word2vec提取的特征,使用BiLSTM和注意力机制捕捉输入特征的内部关系,显著提升了多标签预测性能 | NA | 开发一种新的多标签mRNA亚细胞定位预测模型,以提高预测性能 | mRNA的亚细胞定位 | 机器学习 | NA | 深度学习 | BiLSTM | 序列 | 独立测试集上的实验验证 |
263 | 2024-10-01 |
CROSS-AGE AND CROSS-SITE DOMAIN SHIFT IMPACTS ON DEEP LEARNING-BASED WHITE MATTER FIBER ESTIMATION IN NEWBORN AND BABY BRAINS
2024-Aug-25, ArXiv
PMID:38196752
|
研究论文 | 研究了深度学习模型在新生儿和婴儿大脑白质纤维估计中的跨年龄和跨站点域偏移影响 | 首次探讨了在快速发育的婴儿大脑中估计纤维方向分布函数的域适应技术 | 研究仅限于新生儿和婴儿大脑,未涉及成人或其他年龄段 | 探讨深度学习模型在不同年龄和站点数据上的域偏移问题 | 新生儿和婴儿大脑的白质纤维估计 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 201名新生儿和165名婴儿 |
264 | 2024-10-01 |
In Silico Exploration of Novel EGFR Kinase Mutant-Selective Inhibitors Using a Hybrid Computational Approach
2024-Aug-23, Pharmaceuticals (Basel, Switzerland)
DOI:10.3390/ph17091107
PMID:39338272
|
研究论文 | 本研究利用计算方法识别和表征潜在的EGFR突变选择性抑制剂 | 采用药效团设计和深度学习、虚拟筛选、ADMET和分子对接动力学模拟相结合的混合计算方法 | NA | 开发针对非小细胞肺癌中EGFR突变的有效治疗策略 | EGFR突变选择性抑制剂 | 药物设计 | 肺癌 | 分子对接、分子动力学模拟 | 深度学习 | 分子结构 | 从Zinc数据库中筛选出16个潜在抑制剂 |
265 | 2024-09-30 |
CA-ViT: Contour-Guided and Augmented Vision Transformers to Enhance Glaucoma Classification Using Fundus Images
2024-Aug-31, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering11090887
PMID:39329629
|
研究论文 | 提出了一种轮廓引导和增强的视觉变换器(CA-ViT)用于增强青光眼分类 | 引入条件变分生成对抗网络(CVGAN)来增强和多样化训练数据集,并结合轮廓引导方法提供关键的疾病信息 | 未提及 | 提高青光眼分类的准确性 | 青光眼分类 | 计算机视觉 | 眼科疾病 | 条件变分生成对抗网络(CVGAN) | 视觉变换器(ViT) | 图像 | 使用了包含多个数据集(如EYEPACS、DRISHTI-GS、RIM-ONE、REFUGE)的标准化多通道青光眼数据集(SMDG) |
266 | 2024-09-30 |
FineTea: A Novel Fine-Grained Action Recognition Video Dataset for Tea Ceremony Actions
2024-Aug-31, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging10090216
PMID:39330436
|
研究论文 | 本文构建了一个细粒度视频动作数据集FineTea,用于茶道动作的细粒度分析,并提出了一种名为TSM-ConvNeXt的方法来改进细粒度动作识别 | 提出了TSM-ConvNeXt方法,结合TSM和高性能卷积神经网络ConvNeXt,显著提升了细粒度动作识别的性能 | NA | 促进细粒度动作识别的发展 | 茶道动作的细粒度分析 | 计算机视觉 | NA | 卷积神经网络 | TSM-ConvNeXt | 视频 | 2745个视频片段 |
267 | 2024-09-30 |
Anterior Cruciate Ligament Tear Detection Based on T-Distribution Slice Attention Framework with Penalty Weight Loss Optimisation
2024-Aug-30, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering11090880
PMID:39329622
|
研究论文 | 本研究提出了一种基于T分布切片注意力框架和惩罚权重损失优化的前交叉韧带撕裂检测方法 | 本研究创新性地结合了T分布切片注意力机制和惩罚权重损失函数,显著提高了前交叉韧带撕裂检测的分类准确性 | NA | 提高前交叉韧带撕裂检测的准确性和诊断性能 | 前交叉韧带撕裂 | 计算机视觉 | 运动损伤 | 深度学习 | CNN | 图像 | NA |
268 | 2024-09-30 |
Electroretinogram Analysis Using a Short-Time Fourier Transform and Machine Learning Techniques
2024-Aug-26, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering11090866
PMID:39329608
|
研究论文 | 本研究通过短时傅里叶变换和机器学习技术优化了电生理图波形信号的分类 | 本研究展示了使用Visual Transformer架构和Hamming窗口函数在电生理图信号分类中的优势,并推荐了RF算法用于手动特征提取的场景 | NA | 优化电生理图波形信号的分类方法 | 电生理图信号 | 机器学习 | NA | 短时傅里叶变换 | Visual Transformer | 信号 | NA |
269 | 2024-09-30 |
Artificial Intelligence for Predicting the Aesthetic Component of the Index of Orthodontic Treatment Need
2024-Aug-23, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering11090861
PMID:39329602
|
研究论文 | 本研究利用人工智能自动化评估正畸治疗需求指数的美观成分 | 开发了基于深度学习的算法,能够根据IOTN-AC参考标准预测治疗需求,为临床评估牙齿美观提供辅助 | 所有其他方案提供的权衡较差,且在省略overjet值和数据集补充后的结果不一 | 使用人工智能自动化评估正畸治疗需求指数的美观成分 | 正畸治疗需求指数的美观成分评估 | 机器学习 | NA | 深度学习 | 深度学习算法 | 图像 | 1009张预治疗正面口腔内照片 |
270 | 2024-09-30 |
Beyond Nyquist: A Comparative Analysis of 3D Deep Learning Models Enhancing MRI Resolution
2024-Aug-23, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging10090207
PMID:39330427
|
研究论文 | 本文比较了多种3D深度学习模型在提高MRI分辨率方面的性能 | 本文首次系统比较了多种先进的3D卷积神经网络模型在超分辨率MRI任务中的表现 | 研究仅使用了IXI数据集的结构图像,且数据是通过人工下采样生成的低分辨率MRI | 旨在通过比较不同3D深度学习模型,找到在超分辨率MRI任务中性能和鲁棒性最佳的模型 | 3D卷积神经网络模型在超分辨率MRI任务中的性能 | 计算机视觉 | NA | 深度学习 | 3D卷积神经网络 | 图像 | 使用了IXI数据集的结构图像,数据通过人工下采样生成低分辨率MRI |
271 | 2024-09-30 |
A Deep Learning-Based Framework for Highly Accelerated Prostate MR Dispersion Imaging
2024-Aug-27, Cancers
IF:4.5Q1
DOI:10.3390/cancers16172983
PMID:39272841
|
研究论文 | 本文提出了一种基于深度学习的快速磁共振扩散成像(fMRDI)框架,用于加速前列腺磁共振扩散成像中的药代动力学参数估计 | 本文提出了一个两阶段的深度学习框架,通过深度神经网络直接从增强曲线中估计药代动力学参数,并使用非线性最小二乘法进行进一步优化,显著减少了处理时间 | 本文未详细讨论该方法在其他类型肿瘤或不同成像条件下的适用性 | 开发一种能够显著加速前列腺磁共振扩散成像中药代动力学参数估计的方法 | 前列腺磁共振扩散成像中的药代动力学参数 | 计算机视觉 | 前列腺癌 | 深度学习 | 深度神经网络 | 图像 | 本文使用了内部临床前列腺MRI数据集进行实验 |
272 | 2024-09-30 |
SMAFIRA: a literature-based web tool to assist researchers with retrieval of 3R-relevant information
2024-Aug, Laboratory animals
IF:1.3Q2
DOI:10.1177/00236772241237608
PMID:38872231
|
研究论文 | 开发了一个基于文献的网络工具SMAFIRA,用于辅助研究人员检索与3R相关的信息 | SMAFIRA利用深度学习领域的先进语言模型,提供按实验模型分类的相关文献引用,使检索替代方法更加高效 | NA | 开发工具以提高检索与动物实验替代、减少和优化(3R)相关的信息的效率 | PubMed/MEDLINE数据库中的文献 | 机器学习 | NA | 深度学习 | 语言模型 | 文本 | NA |
273 | 2024-08-07 |
Electrocardiography deep learning models to predict high-risk imaging features in patients with hypertrophic cardiomyopathy: Can it change clinical practice?
2024-08, Heart rhythm
IF:5.6Q1
DOI:10.1016/j.hrthm.2024.02.023
PMID:38365126
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
274 | 2024-09-28 |
Multimodal ischemic stroke recurrence prediction model based on the capsule neural network and support vector machine
2024-Aug-30, Medicine
IF:1.3Q2
DOI:10.1097/MD.0000000000039217
PMID:39213233
|
研究论文 | 本研究提出了一种基于胶囊神经网络和支持向量机的多模态缺血性中风复发预测模型 | 该研究结合了生物化学检测和磁共振成像数据,提出了一个高性能的异质多模态缺血性中风复发预测模型,相比传统机器学习模型,其准确性、特异性、敏感性和曲线下面积均有显著提升 | 本研究为回顾性队列研究,样本量有限,且仅基于珠海地区的数据,未来需要更大规模的前瞻性研究来验证模型的普适性 | 旨在提高缺血性中风复发预测的准确性 | 缺血性中风患者的复发风险 | 机器学习 | 中风 | 胶囊神经网络、支持向量机 | 胶囊神经网络、支持向量机 | 生物化学检测数据、磁共振成像数据 | 634名缺血性中风患者 |
275 | 2024-09-28 |
Weakly-supervised deep learning models enable HER2-low prediction from H &E stained slides
2024-Aug-19, Breast cancer research : BCR
IF:6.1Q1
DOI:10.1186/s13058-024-01863-0
PMID:39160593
|
研究论文 | 本文介绍了一种基于自监督注意力机制的弱监督深度学习模型,用于从H&E染色切片中预测HER2-low乳腺癌 | 提出了一种新的弱监督深度学习模型,能够直接从病理图像中预测HER2-low状态,无需额外的免疫组化测试 | 模型的有效性依赖于HER2检测试验的一致性和可靠性 | 开发一种成本效益高且快速的HER2评估方法 | HER2-low乳腺癌的预测 | 数字病理学 | 乳腺癌 | 自监督注意力机制 | 深度学习模型 | 图像 | 1351名乳腺癌患者的1437张病理图像 |
276 | 2024-09-28 |
Image-based discrimination of the early stages of mesenchymal stem cell differentiation
2024-Aug-01, Molecular biology of the cell
IF:3.1Q3
DOI:10.1091/mbc.E24-02-0095
PMID:38837346
|
研究论文 | 研究使用免疫荧光成像和基于深度学习的计算机视觉技术来区分间充质干细胞早期分化阶段 | 开发了一种基于图像的诊断工具,用于区分间充质干细胞早期分化阶段 | NA | 研究间充质干细胞早期分化的细胞结构变化,并开发一种新的诊断工具 | 间充质干细胞的早期分化阶段 | 计算机视觉 | NA | 免疫荧光成像 | 卷积神经网络 | 图像 | NA |
277 | 2024-09-28 |
Artificial Intelligence (AI)-Enhanced Detection of Diabetic Retinopathy From Fundus Images: The Current Landscape and Future Directions
2024-Aug, Cureus
DOI:10.7759/cureus.67844
PMID:39323686
|
综述 | 本文综述了当前基于人工智能(AI)的糖尿病视网膜病变(DR)从眼底图像检测的现状及未来发展方向 | 本文介绍了深度学习和计算机视觉在分析视网膜图像方面的最新进展,包括卷积神经网络在检测可转诊DR方面的高灵敏度和特异性,多任务学习方法同时检测和分级DR严重程度,以及轻量级模型在移动设备上的部署 | 本文指出了当前AI系统在DR筛查中面临的挑战,包括确保在不同人群中的泛化能力,标准化图像采集和质量,解决复杂模型的“黑箱”性质,以及将AI无缝集成到临床工作流程中 | 探讨人工智能(AI)在糖尿病视网膜病变(DR)检测中的应用现状及未来发展方向 | 糖尿病视网膜病变(DR)的眼底图像 | 计算机视觉 | 糖尿病视网膜病变 | 深度学习 | 卷积神经网络(CNN) | 图像 | NA |
278 | 2024-09-27 |
Transitions in dynamical regime and neural mode underlie perceptual decision-making
2024-Aug-25, bioRxiv : the preprint server for biology
DOI:10.1101/2023.10.15.562427
PMID:37904994
|
研究论文 | 本文研究了感知决策过程中动态状态和神经模式的转变 | 提出了一种基于深度学习的无监督方法,用于从同时记录的前额叶皮层和纹状体神经元活动中发现与决策相关的动态 | 研究仅限于大鼠的听觉证据积累任务,未涉及其他物种或任务类型 | 探讨感知决策过程中吸引子动态是否以及如何影响决策行为和复杂的神经反应 | 大鼠在积累脉冲听觉证据时的前额叶皮层和纹状体神经元活动 | 神经科学 | NA | 深度学习 | NA | 神经元活动数据 | NA |
279 | 2024-09-25 |
Active Learning Pipeline to Identify Candidate Terms for a CDSS Ontology
2024-Aug-22, Studies in health technology and informatics
DOI:10.3233/SHTI240660
PMID:39176629
|
研究论文 | 本文探讨了一种主动学习方法,用于自动识别出版物中的候选术语,并将其用于临床决策支持系统(CDSS)本体的构建 | 提出了一种基于主动学习的自动化方法来识别候选术语,减少了手动构建本体的工作量 | 目前仅提供了初步结果,尚未详细讨论方法的具体效果和应用范围 | 开发一种自动化方法来辅助构建和维护临床决策支持系统的本体 | 临床决策支持系统的本体术语 | 自然语言处理 | NA | 主动学习 | 深度学习模型 | 文本 | NA |
280 | 2024-09-25 |
CT Material Decomposition using Spectral Diffusion Posterior Sampling
2024-Aug, Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography
PMID:39301204
|
研究论文 | 本文介绍了一种基于扩散后验采样(DPS)的新深度学习方法,用于从光谱CT测量中进行材料分解 | 提出了一种结合无监督训练的先验知识和严格物理模型的方法,并引入了一种更快速和更稳定的变体,称为跳跃启动DPS(JSDPS) | NA | 开发一种快速且准确的材料分解方法,用于光谱CT数据 | 光谱CT系统的材料分解性能 | 计算机视觉 | NA | 扩散后验采样(DPS) | 深度学习模型 | 光谱CT数据 | 涉及两种光谱CT系统:双kVp和双层探测器CT |